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ABSTRACT: The relaxation dynamics of the spin-3/2 density operator under strong,
on-resonance radio-frequency (RF) irradiation and in the presence of fluctuating and static
quadrupolar interactions is reviewed. The evolution under the lock is analyzed for any value
of the static quadrupolar interaction, ranging from isotropic systems to systems exhibiting
large splitting far exceeding the line widths. For isotropic systems, relaxation under off-
resonance spin-locking conditions and in the multiple-pulse quadrupolar echo (QE) exper-
iment is reviewed also. Spin-lock pulse sequences optimized for the selective detection of
nuclei involved in slow molecular motion and/or in anisotropic, liquid crystalline environ-
ment are discussed. In Part I, the classical relaxation dynamics of spin 3/2 was reviewed.
© 2003 Wiley Periodicals, Inc. Concepts Magn Reson Part A 19A: 117–133, 2003
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INTRODUCTION

The magnetic relaxation of spin-3/2 quadrupolar
probes (e.g., 7Li, 23Na, 39K, 87Rb, 35Cl, 81Br, and
131Xe) provides a mechanism to extract information
about molecular motions (1). Longitudinal relaxation
gives information about relatively fast motions,

whereas slow dynamics is probed by transverse relax-
ation through the spectral density of the fluctuating
quadrupolar interaction at zero frequency. In part I of
this series, the classical quadrupolar relaxation dy-
namics of spin 3/2 in the multipole basis was re-
viewed. In anisotropically oriented systems such as
liquid crystals, the quadrupolar interaction may not be
averaged completely to zero on the timescale of the
inverse Larmor frequency and the spectrum displays a
frequency splitting. For small splitting or if the satel-
lites are spread out over a large frequency range, an
accurate determination of the transverse relaxation
rates becomes problematic and the slow dynamics is
probed more efficiently by applying a lock through a
strong radio-frequency (RF) field. The spin-lock ex-
periment samples the spectral density at a frequency
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on the order of the RF strength. In previous works, it
has revealed extremely slow ion dynamics on the
order of tens of microseconds in dense Laponite clay
suspensions (2) and the biopolymer Xanthan liquid
crystal (3). Other motivations to consider the effects
of relaxation during RF excitation originate from the
increasing importance of sodium magnetic resonance
imaging (MRI) in whole-body scanners (4 ) and the
need to discern different pools (e.g., intracellular vs.
intercellular) of ions in biological systems (5 ).

For a system of spin 3/2, the dynamics under a lock
through an RF field can be solved in analytical form.
As in part I, extensive use will be made of the irre-
ducible tensor operators. First, I will review the spin-
lock experiment and its variants pertaining to the
isotropic environment. Here, the external (Zeeman
and RF) parts of the Hamiltonian can be removed by
a transformation to an interaction representation with
a time-dependent Wigner rotation matrix. The advan-
tage of this interaction representation is that it is
relatively easy to show that the evolution of the spin
system under locking conditions is similar to longitu-
dinal relaxation in the rotating frame, but with mod-
ified rates. As an alternative to the spin-lock experi-
ment, but with milder experimental constraints, the
multiple quadrupolar echo (QE) experiment will be
described. Then, I will move on to anisotropic sys-
tems and present the formalism to include the nonzero
average, static quadrupolar interaction. In the pres-
ence of both an RF field and static quadrupolar inter-
action, the external Hamiltonian can not be removed
by a simple transformation with a time-dependent
Wigner transformation. Here, I will analyze first the
time evolution of the density operator under the static
Hamiltonian only. The effects of relaxation are treated
subsequently as a first-order, time-independent, per-
turbation to the static Hamiltonian with a discrete
spectrum of degenerate and nondegenerate eigenval-
ues (6 ). Finally, I will review a class of pulse se-
quences to extract information about the dynamics of
the system of spin 3/2 subjected to the composed
Hamiltonian. These pulse sequences include an addi-
tional coherence transfer pulse for selectively detect-
ing nuclei (ions) in an anisotropic environment.

ISOTROPIC ENVIRONMENT

Spin-Locking Conditions

We consider a system of Larmor frequency �0 and we
apply an RF field B1 � �1/� of frequency � � �0 �
�, where � is the gyromagnetic ratio. In the frame
rotating at frequency �, the effective field is the

vector sum of the RF field and the offset �eff� (�1
2�

�2)1/2 and makes an angle � � tan�1(�1/�) with the
direction of the Zeeman field. In the Larmor fre-
quency–rotating frame, the static Hamiltonian H*S �
�Iz � �1Ix does not commute with the fluctuating
quadrupolar interaction H*QF(t) and has to be in-
cluded in the relaxation superoperator in Eq. [8] of
Part I. The most convenient way to describe the time
evolution of the spin system under locking conditions
is to define an interaction representation in which the
effective field disappears (7, 8). In the absence of a
static quadrupolar interaction, this can be done by a
transformation to the doubly rotating tilted frame
(DRTF). In the DRTF, indicated by the double aster-
isk, the static Hamiltonian is removed and the master
equation reads

d�**/dt � ��
0

	


�H*QF*�t
, �H*QF*�t � �
, �**�t
���d�

[1]

With the corresponding rank-two Wigner transforma-
tion matrix Dkm

(2) (with reduced elements dkm
(2)), the

fluctuating, zero-average quadrupolar Hamiltonian is
expressed as

H*QF*�t
 � CQ �
m,k��2

2

��1
mT2kDkm
�2


� ���eff t, ��, ��t
F2�m�t
 [2]

where the sign conventions and angle definitions of
Rose are adopted (9). Restricting to the secular, non-
oscillating terms, the expression of the time depen-
dence of the density operator in terms of the spin
operators takes on the form

d�**

dt
� � �

m��2

2

�T2m, �T 2m
† , �**�� �

k��2

2

�dmk
�2
���
�2

� �Jmk�m�1 � k�
� iKmk�m�1 � k�

 [3]

with the real and imaginary part of the spectral density

Jmk�m�1 � k�
 � �eQ/�
2Re �
0

	


F*2k�t
F2k�t � �
�

� exp�i�m�1 � k�
�
d�
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Kmk�m�1 � k�
 � �eQ/�
2Im �
0

	


F*2k�t
F2k�t � �
�

� exp�i�m�1 � k�
�
d� [4]

respectively (10). Comparison of Eq. [3] here with
Eq. [18] of Part I shows that the time evolution of the
density operator and, hence, of the multipole opera-
tors in the DRTF are similar to that in the rotating
frame but with spectral densities

�
k��2

2

�dmk
�2
���
�2�Jmk�m�1 � k�
� iKmk�m�1 � k�



vs. Jm�m�0
� iKm�m�0
 [5]

In the general case of off-resonance RF irradiation,
coherences nonaligned with the effective field can be
disregarded because they relax independently from
the longitudinal components. Furthermore, these co-
herences are rapidly damped because of B1 inhomo-
geneity and they can be separated from the spin po-
larization tensors by their precession frequency with
respect to the spin-lock field. In the DRTF, the rele-
vant longitudinal components are Zeeman order T̂10

and the spin polarization octopolar order T̂30, because
rank-two quadrupolar order can not be created in an
isotropic environment (see part I). Thus, the time
evolution is similar to longitudinal relaxation (eigen-
state population dynamics) in the rotating frame in
Eq. [22] of part I:

T̂10O¡
R��


T̂10 f 11
��
�t
 � T̂30 f 31

��
�t


T̂30O¡
R��


T̂30 f 33
��
�t
 � T̂10 f 13

��
�t
 [6]

with relaxation functions

f 11
��
 � 1/5�exp��R1

��
t
� 4 exp��R2
��
t
�

f 13
��
 � f 31

��
 � 2/5�exp��R1
��
t
� exp��R2

��
t
�

f 33
��
 � 1/5�4 exp��R1

��
t
� exp��R2
��
t
� [7]

where the superscript (�) denotes dynamics in the
presence of a lock through the RF field. To derive the
relaxation rates, the spectral densities in Eq. [24] of
part I have to be replaced by their counterparts in the
DRTF according to Eq. [5]. Furthermore, the effective

RF usually is much smaller than the Larmor fre-
quency �eff�� �0 and, to a very good approximation,
for k � 0 the spectral density function has the prop-
erty Jmk(m�1 � k�) � Jk(k�) � J�k(�k�). With
the reduced Wigner rotation matrix elements (9), the
expressions for the relaxation rates take the form

R1
��
 � 3/4 sin22�J10��eff
� 1/2�2 � cos 2�

� cos 4�
J1 � 1/2�3 � cos 2�
sin2�J2

R2
��
 � 3/4 sin4�J20�2�eff
� 1/2�3 � cos 2�
sin2�J1

� 1/4�1 � 6 cos2�� cos4�
J2 [8]

The rates contain the spectral densities at frequencies
�eff and 2�eff, respectively, and, hence, are sensitive
to slow molecular motion. As in the case of longitu-
dinal relaxation in the rotating frame, the relaxation
under locking conditions is biexponential if the fluc-
tuating quadrupolar interaction is outside the extreme
narrowing limit.

After the spin-lock period, the B1 field is switched
off and the density operator has to be transformed
back from the DRTF to the rotating frame. If the
general form of the density operator in the DRTF is
�** � ¥l,m clmT̂lm, then in rotating frame the density
operator is represented by �* � ¥k,l,m clmT̂lkDkm

(l )(0,
�, �eff t). With the rotation properties in Table 2 of
Part I, this change in interaction representation results
in a transformation of the relevant tensor operators
according to

T̂10 3 T̂10cos��
� T̂11�a
sin��


T̂30 3 T̂301/8�3 cos��
� 5 cos�3�



� T̂31�a
1/8�3/2 �sin��
� 5 sin�3�



� T̂32�s
1/2�15 cos��
sin2��


� T̂33�a
1/2�5/2 sin3��
 [9]

Depending on the frequency offset through the angle
�, the created spin-polarization octopolar order T̂30

along the effective field transforms into single-, dou-
ble-, and triple-quantum coherences. The multiple-
quantum coherences can be monitored with the help
of an additional coherence-transfer pulse at the end of
the spin-lock period.

So far, the results are valid irrespective of fre-
quency offset, which allows a broad range in effective
field strength. However, it can be difficult to create an
off-resonance RF irradiation, in the face of rapid
relaxation, phase glitches, and carrier frequency
switching (11). In the remaining part of this review,
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we will deal exclusively with on-resonance RF irra-
diation. In the classical spin-lock experiment, the
magnetization is initially transferred on the x-axis of
the rotating frame in a T̂11(a) state by a hard (�/ 2)y

pulse followed by a spin-lock pulse with a 90° phase
shift. In the DRTF, the magnetization is along the
z-axis of the effective field and, hence, in this repre-
sentation the density operator is expressed as �** �
�5T̂10. The density operator now evolves according
to Eq. [6] and, apart from the evolution into rank-one
Zeeman order, spin-polarization octopolar order T̂30

is created

�**�t1
 � �5�T̂10 f 11
��
�t1
 � T̂30 f 31

��
�t1

 [10]

The evolution functions and rates are given by Eqs.
[7] and [8], respectively. If the RF field is applied on
resonance with � � �0, �eff � �1, and � � �/2, the
dependence of R1

(�) on J10(�1) vanishes and the rates
take the simplified form

R1
��
 � J1 � J2 R2

��
 � 3/4J20�2�1
 � J1 � 1/4J2

[11]

Slow molecular motion is probed through the fast rate
R2

(�), which contains the spectral density of the fluc-
tuating quadrupolar interaction at two times the spin-
lock frequency 2�1. Transforming back to the rotating
frame according to Eq. [9], with � � �/2, the density
operator represents a sum of single- and triple-quan-
tum coherences

�*�t1
 � �5�T̂11�a
 f 11
��
�t1
 � 1/ 2�3/ 2T̂31�a
 f 31

��
�t1


� 1/ 2�5/ 2T̂33�a
 f 31
��
�t1

 [12]

Under direct detection, the signal is proportional to
the single-quantum coherence contribution and reads

s�t1, t2
 � f 11
��
�t1
 f 11

�1
�t2
 � 1/ 2�3/ 2f 31
��
�t1
 f 13

�1
�t2


�T1� relaxation
 [13]

where the evolution functions during acquisition are
given by Eq. [30] of part I. The second term on the
right side of Eq. [13] comes from the rank-three
single-quantum coherence, which evolves back into
observable magnetization during the acquisition
period. As in the case of the inversion recovery
experiment, the effect of this interference term can
be minimized by recording the amplitude of the
detected signal immediately after the spin-lock
pulse, or, alternatively, by integrating the entire spec-

trum after Fourier transformation of the free induction
decay (FID).

According to Eq. [9], for � � �/2, the creation of
the double-quantum coherence is suppressed, whereas
the triple-quantum coherence contribution has maxi-
mum intensity. The triple-quantum coherence can be
monitored with an additional coherence transfer pulse
at the end of the evolution period

�/ 2��
 � B1�� � 90
, t1 � �/ 2�0
 � acquire, t2

[14]

where the phase � is stepped through the values 30,
90, 150, 210, 270, and 330°, while the receiver phase
is toggled between 0 and 180° for consecutive scans.
Another option to separate the different coherence
orders is time-proportional phase incrementation
(TPPI) of � � n��, with the counter n � t1/�t1 and
phase increment �� � 45° (12). TPPI has the advan-
tage that all relevant coherences are monitored in a
single experiment (see experimental example subse-
quently). It should be noticed that the filter contains a
single transfer pulse only and not the conventional
pulse pair at the end of the evolution period. It is not
necessary to include a mixing pulse, because the mul-
tiple-quantum coherences are already excited during
the evolution under the lock. With the transformation
properties in Table 3 of part I, the single- ( p � 1) and
triple-quantum ( p � 3) filtered signal contributions
in the multiple-quantum filtered experiment with co-
herence transfer can be calculated and read, respec-
tively,

s�t1, t2, p � 1
 � f 11
��
�t1
 f 11

�1
�t2


� 1/8�3/ 2f 31
��
�t1
 f 13

�1
�t2


s�t1, t2, p � 3
 � �5/8�3/2f 31
��
�t1
 f 13

�1
�t2
 [15]

The spin-lock experiment essentially is two-dimen-
sional (2D), either with or without coherence transfer.
A set of spectra is obtained as a function of the
spin-lock time t1 after Fourier transformation with
respect to the acquisition time t2. A phase-sensitive
2D spectrum can be obtained by taking the real part of
this set and subsequent Fourier transformation with
respect to the evolution time t1.

Multiple-Pulse QEs

The spin-lock experiment suffers from a number of
experimental drawbacks. These drawbacks include
the spectrometer time involved to acquire a full 2D
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data set and the technical difficulties encountered in
simultaneous switching of RF phase and power levels.
In the Ostroff-Waugh multiple-pulse experiment, the
continuous RF irradiation is replaced by a string of
(�/2) pulses (13, 14). The advantage is that the on-
resonance, in-phase spin-echo amplitudes now can be
sampled between the pulses and the relaxation curve
can be recorded in a single scan. Furthermore, the
pulse cycling time, which has a similar meaning as the
RF power level in the continuous spin-lock experi-
ment, can be varied easily in order to probe fluctua-
tions with comparable correlation times.

In the pulsed experiment, the magnetization ini-
tially is transferred on the x-axis of the rotating frame
in a T̂11(a) state by a hard (�/ 2)y pulse followed by
a sequence of (�/ 2)x pulses with cycling time T.
Each pulse has duration �p with duty cycle parameter
�p/T. Again, it is most convenient to define an inter-
action representation in which the (pulsed) RF field
disappears (7 ). In the absence of a static quadrupolar
interaction and with amplitude modulation only, this
can be done by a transformation to the rotating tilted
toggling frame (RTTF). In the RTTF, the effect of the
amplitude-modulated RF irradiation on the fluctuating
quadrupolar Hamiltonian is translated into a time-
modulated argument of the Wigner transformation
matrix

H*QF*�t
 � CQ �
m,k��2

2

��1
mT2kDkm
�2


� ���
0

t

�1�t�
dt�, ��/2,��0t�F2�m�t
 [16]

Here, it is explicitly assumed that the RF field is
applied on resonance. The time-dependent �1(t) is
periodic in the cycle time T: �1(t) � �1(nT � t0),
in which t0 denotes the time elapsed after the nth
echo. Restricting to the nonoscillating, secular terms,
the differential equation for the stroboscopically sam-
pled density operator takes on the form

d�**

dt
� � �

m��2

2

�T2m, �T 2m
† , �**��

� �
k��2

2

�dmk
�2
���/2
�2Jmk�T, k�0
 [17]

where the spectral density has been averaged over the
cycle time

Jmk�T, k�0
 � �eQ/�
2
1

T �
0

T

Re �
0

	


F *2k�t
F2k�t � �
�

� exp�i�m �
t0��

t0

�1�t�
dt�� k�0���d�dt0 [18]

Here, the imaginary part of the spectral density has
been omitted, because in the relevant dynamics of the
eigenstate populations (longitudinal relaxation) it van-
ishes anyway (see part I). The differential in Eq [17]
describing the time evolution of the density operator
in the RTTF is the same as that for continuous RF
irradiation (Eq. [3]) but with pulse cycle time–depen-
dent spectral density Jmk(T, k�0) vs. Jmk(m�1 �
k�0). This similarity is because the multiple pulses
decouple the longitudinal subset T̂10 and T̂30 from
any other coherence nonaligned with the pulsed RF
field, like the effect of continuous RF irradiation in
the spin-lock experiment (14).

In the limit of zero pulse spacing with duty cycle
parameter �p/T 3 1, one recovers the situation for
the dynamics under locking conditions and Jmk(T,
k�0) correctly reduces to Jmk(m�1 � k�0). The
average RF usually is much smaller than the Larmor
frequency

m
1

� �
t0��

t0

�1�t�
dt� � k�0, k � 0 [19]

and the integral over �1(t) in Eq. [18] can be ne-
glected for k � 0 : Jmk(T, k�0) � Jk(k�0) �
J�k(�k�0). The only important spectral density
function to be evaluated is J20(T) (k � 0). The other
term with k � 0, i.e., J10(T), is irrelevant, because
the dependence of the relevant relaxation rate R1

(qet)

(see below) on J10(T) vanishes if the QEs are sam-
pled on resonance. To calculate J20(T), we assume an
exponential correlation function of the fluctuating
quadrupolar interaction


F*20�t
F20�t � �
� � A exp��� /�c
,

A � �2��
2/20 [20]

with correlation time �c and � denotes the root-mean-
square coupling constant. The correlation function is
sign modulated because of the effect of the (�/2)
pulse train and a pulse cycle time–dependent relax-
ation rate is observed if the cycle time is on the order
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of the correlation time. The pulse cycle time–depen-
dent expression of the spectral density function
J20(T) takes on the form (14)

J20�T
 � A�c�1 �
�p

T � ���c/�p

2

1 � ���c/�p

2��

�
A�c

2

T � tanh� T

2�c
� �

sinh��T � 2�p
/2�c


cosh�T/2�c

�

� �1 �
2

1 � ���c/�p

2 �

1 � ���c/�p

2

�1 � ���c/�p

2
2� [21]

In the limit of � � function pulses �p/T 3 0, this
expression can be simplified and reads

J20�T
 � A�c�1 �
2�c

T
tanh� T

2�c
�� [22]

and in the limit of zero pulse spacing, one recovers the
expression for the experiment under continuous lock-
ing conditions

J20�T � �p
 �
A�c

1 � ���c/T

2 � J20�2�1
,

�1 � �/ 2T [23]

These two limiting expressions show a similar fre-
quency behavior and are dependent on the cycle
time T if T is on the order of the correlation time �c

(14 ).
The time evolution of the stroboscopically sampled

density operator in the multiple-pulse experiment is
similar to that under continuous RF irradiation in Eq.
[12]. If the in-phase and on-resonance QEs are sam-
pled at echo times tn � nT, the signal is proportional
to the rank-one single-quantum coherence contribu-
tion

s�tn
 � f 11
�qet
�tn
 �QET experiment
, [24]

where the superscript (qet) has been used to discern
the dynamics under the QE train (QET). The relax-
ation is a biexponential function

f 11
�qet
�tn
� 1/5�exp��R1

�qet
tn
� 4 exp��R2
�qet
tn
� [25]

in which

R1
�qet
 � J1 � J2 R2

�qet
 � 3/4J20�T
� J1 � 1/4J2 [26]

It should be noticed that the amplitude fraction of the
slow and fast relaxing component is fixed to 0.2 and
0.8, respectively; there is no interference from the
excited rank-three single-quantum coherence because
of the sampling between the pulses.

As in the case of continuous RF irradiation, the
excited triple-quantum coherence can be monitored
with an additional coherence transfer pulse at the end
of the pulse train

�/ 2��
 � �T/ 2 � �/ 2�� � 90
 � T/ 2�n

� �/ 2�0
 � acquire, t2 [27]

where the phase � is stepped through the values 30,
90, 150, 210, 270, and 330°, with sign alternation of
the receiver phase for consecutive scans. Another
option is TPPI with � � n�� with the counter n and
phase increment �� � 45°. Analogous to Eq. [15],
the single- and triple-quantum filtered signal contri-
butions in the multiple-quantum filtered experiment
with coherence transfer read, respectively,

s�t1, t2, p � 1
 � f11
�qet
�t1
 f11

�1
�t2


� 1/8�3/2 f31
�qet
�t1
 f13

�1
�t2


s�tn, t2, p � 3
 � 5/8�3/ 2 f31
�qet
�tn
 f13

�1
�t2
 [28]

with the biexponential relaxation function

f 31
�qet
�tn
� 2/5�exp��R1

�qet
tn
� exp��R2
�qet
tn
� [29]

Now, a true 2D experiment has to be done, in which
the FID is acquired after the multiple-pulse sequence
and the number of pulses n is incremented. It is clear
that the experiment with coherence transfer is more
time-consuming than the direct sampling method, but
it has the advantage that signal from nuclei in the
extreme narrowing limit does not contribute to the
triple-quantum filtered signal.

Figure 1 shows a multiple-quantum spectrum of
23Na in a poly-(methylacrylate) (PMA) ion exchange
resin using the multiple-pulse sequence in Eq. [27]
with TPPI (14). The spectrum represents a slice along
F1 at the resonance frequency in F2. With a phase
increment �� � 45° and a pulse cycle time T � 60
�s, the frequency shift between subsequent coherence
orders takes the value ��/ 2�T � 2.08 kHz. Hence,
the feature at 2.08 kHz is the single-quantum contri-
bution, whereas the signal at three times this fre-
quency represents the triple-quantum filtered contri-
bution [Fourier transform of f 31

(�)(t1)]. Note that the
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double-quantum contribution is indeed suppressed, in
accordance with Eq. [9] and for on-resonance condi-
tions with � � �/2. If the RF irradiation is applied
continuously, rather than pulsed, a very similar spec-
trum is observed (15). The line shapes agree with the
theoretical predictions, but the relaxation rate of the
fast relaxing component is not pulse cycle time de-
pendent. In the PMA resin, the spectral density does
not show dispersion in the low-frequency, kHz range
and the rates agree with the spectral densities obtained
with conventional relaxation experiments (14).

ANISOTROPIC ENVIRONMENT

In the simultaneous presence of a static quadrupolar
interaction and an RF field, the external part of the
Hamiltonian can not be removed by a relatively simple
transformation to an interaction representation through a
time-dependent Wigner transformation. In this situation,
the static Hamiltonian H*S � H*1 � H*QS does not com-
mute with the fluctuating quadrupolar Hamiltonian
H*QF(t) and has to be taken explicitly into account in the
analysis of the relaxation contribution (16–18). Here,
we will consider the on-resonance spin-lock experiment
only. As far as I know, relaxation of spin 3/2 under
off-resonance and/or pulsed RF irradiation and in the
presence of a static quadrupolar interaction has not been
treated in the literature. First, we will analyze the time
dependence of the density operator under the static
Hamiltonian only. The effects of relaxation will be
treated subsequently as a first-order, time-independent,
perturbation (18).

Unperturbed Time Dependence Under the
Static Hamiltonian

In the multipole basis and without relaxation, the time
evolution of the density operator under the static
Hamiltonian

d�*/dt � �i�H*S, �*�

��i��1T11�a
� 1/�6 �QT20, �*� [30]

reduces to two sets of differential equations. The first
one is

d

dt �
T̂11�a


T̂20

T̂21�s

T̂22�s

T̂31�a

T̂32�a

T̂33�a


� � �
0 0 i�3/5�Q 0 0 0 0
0 0 �i�3�1 0 0 0 0

i�3/5�Q �i�3�1 0 �i�1 i�2/5�Q 0 0
0 0 �i�1 0 0 i�Q 0
0 0 i�2/5�Q 0 0 �i�5/2�1 0
0 0 0 i�Q �i�5/2�1 0 �i�3/2�1

0 0 0 0 0 �i�3/2�1 0

��
T̂11�a


T̂20

T̂21�s

T̂22�s

T̂31�a

T̂32�a

T̂33�a


� [31]

and for the second set one has

Figure 1 23Na multiple-quantum spectrum of a PMA ion
exchange resin using the multiple-pulse QE sequence with
TPPI. Experimental parameters: �� � 45�, T � 60 �s,
and �p � 10 �s. The feature at 2.08 kHz is the single-
quantum contribution, whereas the signal at three times this
frequency represents the triple-quantum contribution; the
double-quantum contribution is suppressed. The solid line
represents a fit of the theoretical line shape as described in
Ref. 14.
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d

dt �
T̂10

T̂11�s

T̂21�a

T̂22�a


T̂30

T̂31�s

T̂32�s

T̂33�s


� � �
0 �i�1 0 0 0 0 0 0
�i�1 0 i�3/5�Q 0 0 0 0 0

0 i�3/5�Q 0 �i�1 0 i�2/5�Q 0 0
0 0 �i�1 0 0 0 i�Q 0
0 0 0 0 0 �i�6�1 0 0
0 0 i�2/5�Q 0 �i�6�1 0 �i�5/2�1 0
0 0 0 i�Q 0 �i�5/2�1 0 �i�3/2�1

0 0 0 0 0 0 �i�3/2�1 0

��
T̂10

T̂11�s

T̂21�a

T̂22�a


T̂30

T̂31�s

T̂32�s

T̂33�s


�
[32]

These two sets evolve independently, but they are
coupled at a change of RF phase. On resonance, the
matrices can be diagonalized and the differential
equations can be integrated in analytical form (19,
20). The matrix in the first set has a 3D null space
with three degenerate eigenvectors A1, A2, and A3

with eigenvalues �0 � 0 and four others A�4, A�5

with imaginary eigenvalues �i�1,2, being

�1 � ��Q
2 � 2�1�Q � 4�1

2,

�2 � ��Q
2 � 2�1�Q � 4�1

2 [33]

whereas the matrix in the second set has eight eigen-
vectors with imaginary eigenvalues �i�3,4,5,6

�3 � �1 � 1/�2 ��Q
2 � 4�1

2 � �1�2,

�4 � �1 � 1/�2 ��Q
2 � 4�1

2 � �1�2

�5 � �1 � 1/�2 ��Q
2 � 4�1

2 � �1�2,

�6 � �1 � 1/�2 ��Q
2 � 4�1

2 � �1�2 [34]

The resulting time dependencies of the basis operators
are rather complicated functions and have been set out
by Campolieti et al. (21). Here, we will review those
results only, which are of interest for the description
of the evolution of the spin system under locking
conditions.

In the on-resonance spin-lock experiment, the
magnetization initially is transferred on the x-axis of

Table 1 Coefficients Giving the Time-Dependence of T̂11(a) Under H*S

a11(t) 1

10 �4��Q
4 � 4�Q

2�1
2 � 40�1

4


�1
2�2

2 � 3�Q
2 �cos �1t

�1
2 �

cos �2t

�2
2 �	

a20(t)
3�Q�1

2�5
�2��Q

2 � 4�1
2


�1
2�2

2 �
cos �1t

�1
2 �

cos �2t

�2
2 �

a21(t)
i�3�Q

2�5
�sin �1t

�1
�

sin �2t

�2
�

a22(t) �
�3�Q

2�5
�2�1��Q

2 � 4�1
2


�1
2�2

2 �
��Q � �1
cos �1t

�1
2 �

��Q � �1
cos �2t

�2
2 	

a31(t) �
�3�Q

10�2
�4�Q��Q

2 � �1
2


�1
2�2

2 �
�2�Q � 5�1
cos �1t

�1
2 �

�2�Q � 5�1
cos �2t

�2
2 	

a32(t) �
i�3�Q

�5
�sin �1t

�1
�

sin �2t

�2
�

a33(t)
3�Q�1

2�10
�4�Q�1

�1
2�2

2 �
cos �1t

�1
2 �

cos �2t

�2
2 �
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the rotating frame in a T̂11(a) state by a hard (�/ 2)y

preparation pulse, followed by a spin-lock pulse with
a 90° phase shift. The first set of seven differential
equations in Eq. [31] includes T̂11(a) and, hence, is
relevant for the description of the spin-lock experi-

ment. It also includes T̂20, which is, as we will see,
important for the calculation of the relaxation contri-
bution. The eigenvalues and eigenvectors pertaining
to the corresponding matrix are, respectively (17),

0 A1 � �5

2

�1
2

�Q
2 T̂11�a
� �3

2

�1

�Q
T̂22�s
� T̂33�a


0 A2 � � 5�1
2

�6 �Q
2 � �2

3�T̂11�a
� �5

2

�1

�Q
T̂22�s
� T̂31�a


0 A3 � �5
�1

�Q
T̂11�a
� T̂20

� i�1 A 4 � �2

5

�Q

�1
T̂11�a
� �2 T̂20 � �2

3

�1

�1
T̂21�s
� �2

3 �1 �
�Q

�1
�T̂22�s


�
1

�15
�5 �

2�Q

�1
�T̂31�a
� �2

3

�1

�1
T̂32�a
� T̂33�a


� i�2 A 5 �� �2

5

�Q

�1
T̂11�a
� �2 T̂20 � �2

3

�2

�1
T̂21�s
� �2

3 �1 �
�Q

�1
�T̂22�s


�
1

�15
�5 �

2�Q

�1
�T̂31�a
� �2

3

�2

�1
T̂32�a
� T̂33�a
 [35]

With the eigensystem in Eq. [35], the time evolution of
the initial single-quantum coherence T̂11(a), in the pres-
ence of an on-resonance RF field, takes on the form

eiH*S tT̂11�a
e
�iH*S t � a11�t
T̂11�a
 � a20�t
T̂20

� a21�t
T̂21�s
 � a22�t
T̂22�s
 � a31�t
T̂31�a


� a32�t
T̂32�a
 � a33�t
T̂33�a
 [36]

and the coefficients aij(t) are set out in Table 1. The
spectra resulting from the Fourier transform of the
transfer functions pertaining to the evolutions into
T̂11(a), T̂20, T̂22(s), T̂31(a), and T̂33(a) show a
central resonance and two satellite pairs at frequencies
�1 and �2, whereas the contributions related to T̂21(s)
and T̂32(a) transform into two satellite pairs in an-
tiphase. Measurement of the positions of the satellites
provides the RF power and the static quadrupolar
coupling parameter. The satellites are liable to line-
broadening effects related to RF field inhomogeneity
and, accordingly, the central lines in the correspond-
ing spectra are designated for relaxation studies.

The Relaxation Contribution

To calculate the shape of the central lines, we have
to incorporate relaxation effects into the differential
equations through the addition of the relaxation
contribution to the master equation. With the fluc-
tuating quadrupolar interaction in Eq. [5] of part I
and the Larmor frequency rotating frame, the re-
laxation superoperator in Eq. [8] of part I takes on
the form

f��*
 � ��eQ/�
2 �
m��2

2

� �
0

	

�T2m, �exp��iH*S�
T 2m
† exp�iH*S�
, �*�t
��

� 
�F *2m�t
� 
F *2m���F2m�t � �
� 
F2m���

� exp�im�0�
d� [37]
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where the evolution of the spin operator T2m
† under

H*S is given by the solution to the differential in Eqs.
[31] and [32]. The relaxation contribution reduces to
a combination of the spectral densities Jm(m�0 � �i)
at a number of frequencies m�0 � �i with m � 0,
�1, �2, and �i given by Eqs. [33] and [34]. The
imaginary part of the spectral density function results
in very small, second-order, frequency shifts and a
weak coupling of the two sets of differential equa-
tions. These dynamic frequency shifts are ignored. In
the terms proportional to the spectral densities at
approximately one and two times the Larmor fre-
quency, the time-independent Hamiltonian H*S, how-
ever, can be neglected, because the Larmor frequency
�0 generally is much larger than any of the frequen-
cies �i and, hence, Jm(m�0 � �i) � Jm(m�0) � Jm

for m � �1 and �2. The m � 0 term is sensitive to
slow molecular motion, and the time evolution of the
corresponding spin operator T20 under the action of
H*S has to be taken into account explicitly. With the
eigensystem in Eq. [35], the evolution of T20

(�2�3/ 2 T̂20) is summarized as

eiH*S tT̂20e
�iH*S t � a11�t
T̂11�a
 � a20�t
T̂20

� a21�t
T̂21�s
 � a22�t
T̂22�s
 � a31�t
T̂31�a


� a32�t
T̂32�a
 � a33�t
T̂33�a
 [38]

where the coefficients aij(t) are set out in Table 2. The
spin-operator double-commutator now can be calcu-
lated with the commutation relationships (22, 23), and
the relaxation contribution takes on the form (16, 17)

d

dt �
T̂11�a


T̂20

T̂21�s

T̂22�s

T̂31�a

T̂32�a

T̂33�a


�
� ��

3/10D � J1 � 2/5J2 0 0 � �15/10E �6/10D � �6/5J2 0 0
3�5/10A 2J1 � 2J2 0 �3/2B �30/10A 0 0

0 0 3/2G � J1 � 2J2 0 0 3/2F 0
3�15/10F 0 0 3/2G � 2J1 � J2 3�10/10F 0 0

3�6/20I � �6/5J2 0 0 3�10/20J 3/10I � J1 � 3/5J2 0 0
0 0 3/2F 0 0 3/2G � J2 0

3�10/20B 0 0 �6/4A �15/10B 0 J1 � J2

��
T̂11�a


T̂20

T̂21�s

T̂22�s

T̂31�a

T̂32�a

T̂33�a


� [39]

Table 2 Coefficients Giving the Time Dependence of T̂20 Under H*S

a11(t) �
3�1�Q

2�5
�cos �1t

�1
2 �

cos �2t

�2
2 �

�1
2 � �2

2

�1
2�2

2 �
a20(t) �Q

4 � �1
2�Q

2 � 4�1
4

�1
2�2

2 �
3�1

2

2 �cos �1t

�1
2 �

cos �2t

�2
2 �

a21(t)
�

i�3 �1

2 �sin �1t

�1
�

sin �2t

�2
�

a22(t) �3 �1

2 ��Q�cos �1t

�1
2 �

cos �2t

�2
2 � � �1�cos �1t

�1
2 �

cos �2t

�2
2 � �

2�1

�1
2�2

2 ��Q
2 � 4�1

2
	
a31(t) �

�3 �1

2�10 �2�Q�cos �1t

�1
2 �

cos �2t

�2
2 � � 5�1�cos �1t

�1
2 �

cos �2t

�2
2 � �

4�Q

�1
2�2

2 ��Q
2 � �1

2
	
a32(t) i�3 �1

2 �sin �1t

�1
�

sin �2t

�2
�

a33(t) �
3�1

2

2�2
�cos �1t

�1
2 �

cos �2t

�2
2 �

�1
2 � �2

2

�1
2�2

2 �
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and

d

dt �
T̂10

T̂11�s

T̂21�a

T̂22�a


T̂30

T̂31�s

T̂32�s

T̂33�s


�
� ��

2/5J1 � 8/5J2 0 �15/10A 0 4/5J1 � 4/5J2 0 �15/5B 0
0 3/10C � J1 � 2/5J2 0 � �15/10A 0 �6/10C � �6/5J2 0 0
0 0 3/2G � J1 � 2J2 0 0 0 0 0
0 0 0 3/2G � 2J1 � J2 0 0 0 0

4/5J1 � 4/5J2 0 �15/5A 0 8/5J1 � 2/5J2 0 � �15/10B 0
0 3�6/20H � �6/5J2 0 3�10/20A 0 3/10H � J1 � 3/5J2 0 0
0 0 0 0 0 0 3/2G � J2 0
0 3�10/20B 0 �6/4A 0 �15/10B 0 J1 � J2

��
T̂10

T̂11�s

T̂21�a

T̂22�a


T̂30

T̂31�s

T̂32�s

T̂33�s


�
[40]

The coefficients A through J are linear combina-
tions of the spectral densities at frequencies �1, �2,
and zero: J0(�1) � J�1, J0(�2) � J�2, and J0(0) �

J0, respectively. The coefficients of these combina-
tions are collected in Table 3. The frequencies �1 and
�2 are related to both the residual quadrupolar cou-

Table 3 Coefficients in Eqs. [39] and [40] in Terms of the Spectral Densities J0(�1), J0(�2), and J0(0)

J0(�1) J0(�2) J0(0)

A
�1��Q � �1


�1
2

�1��Q � �1


�2
2 �

2�1�Q��Q
2 � 2�1

2


�1
2�2

2

B �
�1��Q � �1


�1
2

�1��Q � �1


�2
2 �

2�1
2��Q

2 � 4�1
2


�1
2�2

2

C �
�1��Q � 2�1


�1
2

�1��Q � 2�1


�2
2

2��Q
4 � 8�1

4


�1
2�2

2

D
�1��Q � 4�1


�1
2 �

�1��Q � 4�1


�2
2

2�Q
2 ��Q

2 � 2�1
2


�1
2�2

2

E
�1��Q � 4�1


�1
2

�1��Q � 4�1


�2
2 �

2�1�Q��Q
2 � 4�1

2


�1
2�2

2

F �
�1

2

�1
2

�1
2

�2
2 �

4�1
3�Q

�1
2�2

2

G
�1

2

�1
2

�1
2

�2
2

2

3 ��Q
4 � �Q

2�1
2 � 4�1

4

�1
2�2

2 	
H

�1��Q � 3�1


�1
2 �

�1��Q � 3�1


�2
2

2

3 �2�Q
4 � 5�Q

2�1
2 � 4�1

4

�1
2�2

2 	
I �

�1��Q � �1


�1
2

�1��Q � �1


�2
2

2

3 �2�Q
4 � �Q

2�1
2 � 20�1

4

�1
2�2

2 	
J

�1��Q � �1


�1
2

�1��Q � �1


�2
2

�
2�1�Q��Q

2 � 6�1
2


�1
2�2

2
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pling and the (tunable) RF field strength according to
Eq. [33]. Because of the presence of the RF field, the
invariance of the spin system under a rotation about
the z-axis is lifted. This results in a different relax-
ation behavior of the symmetric and antisymmetric
tensor combination. In the absence of a low-frequency
dispersion, i.e., when J0 � J�1 � J�2, the �Q and �1

dependencies in the relaxation in Eqs. [39] and [40]
vanish and the matrices reduce to the much simpler
forms in terms of J0, J1, and J2 only and are listed in
part I. Without RF, the �Q-dependence in the rates
vanishes, because the static quadrupolar Hamiltonian
H*QS commutes with the m � 0 term in the fluctuating
quadrupolar Hamiltonian H*QF. The total time depen-
dence of the basis operators is given by the sums of
Eqs. [31] and [39] and Eqs. [32] and [40]. Once the
eigenvalues and eigenoperators are known, the time
dependence of each of the basis operators can be
determined. In the simultaneous presence of an RF
field and a static quadrupolar coupling, the master
equation can not be solved in analytical form.

Perturbation Analysis of the Line Shapes

Under the condition that the line widths are much
smaller than the frequencies �1 and �2, the operators
corresponding to the nonsingular eigenvalues in the
eigensystem in Eq. [35] are to a very good approxi-
mation still eigenoperators if the relaxation contribu-
tion is included. Accordingly, the operators A�4 and
A�5 oscillate with frequencies ��1 and ��2, respec-
tively, and are decoupled and relax independently.
The intensities of the corresponding satellite pairs are
given by the transfer functions in Table 1. For the
corresponding rates R4 and R5, the reader is referred
to Ref. 18, but they have little practical value, because
of additional broadening effects related to RF field
inhomogeneity. The line shape of the central reso-
nance is determined by the relaxation-induced pertur-
bation of the null space spanned by operators A1, A2,
and A3 (however, these operators are still decoupled
from A�4 and A�5 if the line widths are much smaller
than the frequencies �1 and �2). To obtain the line
shape, the corresponding subset of the master equa-
tion in the eigenoperator representation in Eq. [35]
(the secular terms) has to be diagonalized and subse-
quently integrated in analytical form. For this pur-
pose, one must solve the secular equation pertaining
to the operators A1, A2, and A3 to determine the
eigenvalues (relaxation rates) and to calculate the
corresponding eigenoperators. The eigenoperators are
reported in Ref. 18 and the rates take on the form

RS
1� � J1 � J2, RF 

1� � p � �q2 � r 2 [41]

with

p �
3�1

2

2 �J�2

�2
2 �

J�1

�1
2� �

3

2
J1

�
3��Q

4 � 2�1
2�Q

2 � 8�1
4


2�1
2�2

2 J2

q �
3�1

2

2 �J�2

�2
2 �

J�1

�1
2 �

4�Q�1

�1
2�2

2 J2� ,

r �
��Q � 2�1
��Q � 2�1


2�1�2
� J1 � J2
 [42]

Because of the 3D null space, the central resonance
generally is trimodal and consists of a narrow com-
ponent related to a slowly relaxing mode and two
broad components pertaining to two faster relaxing
modes with rates RS

1� and RF 
1� , respectively. Slow

dynamics is probed by the fast modes, because the
rates RF 

1� are sensitive to the spectral densities J�1

and J�2 (it should be noticed that they are insensitive
to J0). Furthermore, the rates of the fast modes de-
pend on the relative strengths of the static interactions
�1/�Q, whereas the slow relaxation rate RS

1� is sen-
sitive to the high-frequency contributions J1 and J2

only.
As far as the central line is concerned, the locked

T̂11(a) coherence transfers into

T̂11�a
 3 g11�t
T̂11�a
 � g20�t
T̂20 � g22�t
T̂22�s


� g31�t
T̂31�a
 � g33�t
T̂33�a
 [43]

with the relaxation functions

gij�t
 � AS exp!�RS
1�t"� AF�exp!�RF�

1� t"

� AF�exp!�RF�
1� t" [44]

Note that the restriction to the central line is at the
same level of approximation as the restriction to the
nonoscillating, secular terms in the master equation if
the time-dependent part of the Hamiltonian is re-
moved by a suitable transformation to an interaction
representation. The amplitudes of the slow and fast
modes AS and AF , respectively, are calculated with
the eigenoperators and have been set out in Table 4.
The amplitude of the slow mode does not depend on
the spin-lock field strength or the value of the static
quadrupolar coupling. For the fast modes, the ampli-
tudes depend on �1/�Q as well as the spectral densi-
ties through the parameters q and r. In particular, the
transfers into the quadrupolar spin polarization T̂20

and the rank-two double-quantum coherence T̂22(s)
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are bimodal, i.e., g20(t) and g22(t) do not exhibit a
slow mode (AS � 0). In the limit �1 ## �Q, the RF
field strength far exceeds the static quadrupolar cou-
pling and the frequencies collapse to the same value
of �1 � �2 � 2�1. For a such strong RF field, the
rank-two T̂22(s) and T̂20 coherences are no longer
excited and the evolution into the other coherences
reduces to the one for �Q � 0 as given in Eq. [12].
Rank-two coherences are excited only when there are
residual quadrupolar couplings in the sample and pro-
vided the spin-lock field strength is comparable with
these couplings. Hence, a spin-lock pulse sequence
followed by a coherence transfer pulse cycled through
the T̂22(s) or T̂20 state is selective to nuclei in an
ordered environment, like the double-quantum magic-
angle and the Jeener-Broekaert pulse sequences as
reviewed in part I (5 ).

Pulse Sequences

First, we will discuss the conventional spin-lock ex-
periment, in which the signal is sampled directly after
the spin-lock field has been switched off. The detected
signal is proportional to the T̂11(a), T̂21(s), and
T̂31(a) single-quantum coherence contributions. After
2D Fourier transformation, the central resonance in
the F1 domain (i.e., the nonoscillating and secular
contribution) contains the contributions from T̂11(a)
and T̂31(a) only; the contribution related to T̂21(s)
transforms into two satellite pairs in antiphase and can
be spread out over a large frequency range. Hence, the
directly detected signal pertaining to the central res-
onance in F1 takes the form

s�t1, t2
 � g11�t1
 f 11
�1
�t2
 � g31�t1
 f 13

�1
�t2


[45]

To identify the T1� relaxation of the satellites and
central transition, the evolution functions in the de-
tection period in Eq. [47] of part I are expanded and
the signal is expressed as

s�t1, t2
 �
1

5
��3g11�t1
 � �6 g31�t1



� cos��Qt2
exp��Rst2


� �2g11�t1
� �6 g31�t1

exp��Rct2
� [46]

where Rs � J0 � J1 � J2 and Rc � J1 � J2 are the
transverse relaxation rates of the satellites and the
central resonance (without spin-lock field), respec-
tively. The signals in the F1 domain, pertaining to a
certain value of the static quadrupolar interaction, can
be selected by taking a section along F1 at the position
of the corresponding satellite signal in F2. The con-
tributions pertaining to the satellites and central tran-
sition in F2 are identified easily in the first and the
second term on the right side of Eq. [46], respectively.
For the satellites, the amplitude of the slow mode AS

vanishes in the relevant combination of the relaxation
functions 3g11 � �6g31 (see Table 4). Accordingly,
the T1� relaxation of the satellites is bimodal and is
particularly sensitive to slow dynamics. However, the
latter relaxation becomes single exponential if the RF
field strength far exceeds the static quadrupolar cou-
pling �1 ## �Q. In this limiting situation, AF� � 0
for all coherences and the spin-lock relaxation rate of
the satellites takes the simple form

RF�
1� �

3

4
J�1 � J1 �

1

4
J2 ��1 	 �Q, �1 � 2�1


[47]

Table 4 Amplitudes in the Relaxation Functions of the Central Resonance
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The spin-polarization quadrupolar order T̂20, the
double-quantum coherences T̂22(s) and T̂32(a), or the
triple-quadrupolar coherence T̂33(a) can be moni-
tored if the spin-lock sequence is followed by a co-
herence transfer pulse

�/ 2��
 � B1�� � 90
, t1 � ����
 � acquire, t2

[48]

where the phase � and the flip angle � have to be
specified to select the desired coherence order. The
other coherences belong to the other subset and are
irrelevant in the context of the spin-lock experiment
(they also do not exhibit a central line in the F1

domain).
Cycling through the T̂20 state has proven to be

most suitable to extract dynamic information in the
presence of static quadrupolar interactions because
the corresponding relaxation function g20(t1) does not
exhibit a slow mode and the pulse sequence is selec-
tive to nuclei in an anisotropic environment (3). For
optimized detection of T̂20, the flip angle of the final
coherence transfer pulse should be � � 45°. The
phase � is stepped through 0, 90, 180, and 270° while
the receiver phase is kept at a constant value. Because
of the invariance of T̂20 with respect to a rotation
about the z-axis, the value of the phase �� is irrele-
vant. Because of pulse imperfections, Zeeman order
T̂10 and octopolar spin polarization T̂30 also may be
excited. However, their signal contributions can be
suppressed by performing two experiments with co-
herence transfer pulse angles � � 45 and 135°, re-
spectively, and subsequent subtraction of the resulting
spectra. For a single-pulse angle, the same effect can
be achieved if one takes the difference of the sections
at the resonance positions of the two satellites in the
acquisition domain. The final pulse transfers the qua-
drupolar spin polarization T̂20 created under the lock
into second-rank single-quantum coherence T̂21(s),
which evolves into detectable transverse magnetiza-
tion during the detection time t2. Including the satel-
lites at frequencies �1 and �2, the signal reads

s�t1, t2, p � 0


� �g20�t1
 �
3�Q�1

2�5 �cos��1t1
exp��R4t1


�1
2

�
cos��2t1
exp��R5t1


�2
2 �	f12

�1
�t2
 [49]

with the evolution into the central resonance in F1

given by g20(t1) in Table 4. For the rates of the
satellites, Ref. 18 may be consulted, but they have

little practical value because of broadening effects
related to RF field inhomogeneity. The signal is iden-
tically zero if there is no quadrupolar coupling, as
well as in the case �Q � 0, but if �1 ## �Q or �Q

## �1. Therefore, signal is only observed in the
presence of a static quadrupolar coupling and pro-
vided �Q � �1.

A simulated 2D contour spectrum, pertaining to a
spin-lock experiment cycled through the T̂20 state, is
shown in Fig. 2. The spectrum represents a powder
average over randomly oriented domains and all of
the domains have the same dynamical properties. Fur-
thermore, the spectrum was calculated for a moderate
RF field strength �1/2� � 1.95 kHz and the values of
the other parameters were chosen in accordance with
the experimental results for sodium in Xanthan liquid
crystal (3). Note that the phase information is lost,
because the absolute value of the spectrum is dis-
played. Figure 3 shows a slice along F2 at F1 � 0,
which represents a powder average of the satellite pair
in antiphase with maximum splitting �� Q/ 2� � 5.4
kHz. A slice along F1 at �1/2� � 1.95 kHz in F2 is
displayed in Fig. 4. This slice pertains to those do-
mains in the powder with a splitting just matching the
spin-lock field strength: �Q/ 2� � �1/ 2� � 1.95
kHz. Apart from the central resonance, the spectrum
displays the two characteristic satellite pairs at fre-
quencies �1/2� and �2/2�. The central line is com-

Figure 2 Simulated 2D power spectrum of the selectively
detected quadrupolar order T̂20. The absolute value of the
spectrum is displayed. Spin-lock field strength: �1/2� �
1.95 kHz; maximum quadrupolar splitting measured along
the local director �� Q/ 2� � 5.4 kHz.
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posed of a sum of two Lorentzians with amplitudes
and rates depending on �1, �Q, and the spectral
densities J�1, J�2, J1, and J2 (it does not exhibit a
slow mode). The high-frequency contributions J1 and
J2 can be obtained from an inversion recovery exper-
iment, leaving J�1 and J�2 to be determined from a fit
of the Fourier transform of g20(t1) to the central line.
In practice, it may be difficult to fit J�1 and J�2,
despite the bimodal line shape. However, numerical
evaluation of g20(t1) shows that the dependence of
the line shape on J�2 is minor but not negligible for
�Q � �1. For instance, in the average rate pertaining
to g20, which corresponds to the first cumulant, the
dependence on J�2 vanishes for �Q � �1. Accord-

ingly, it is advisable to perform experiments with
various spin-lock field strengths, extract spectra in F1

for which the condition �Q � �1 is satisfied (as in
Fig. 4), and optimize the dominant spectral density
J�1 in an iterative manner (3).

In the double-quantum filtration experiment, the
phase � is stepped through the values 0, 90, 180, and
270°, while the receiver phase is alternated between 0
and 180°. The phase �� is set to 45° for selective,
simultaneous, detection of T̂22(s) and T̂32(a) (the
other combinations are selectively detected if �� �
0°). A double-quantum filtered 2D spectrum with
coherence transfer pulse angle � � 90° shows two
signal contributions; T̂22(s) and T̂32(a). The latter
contribution does not exhibit a central resonance in F1

and, hence, is irrelevant from a relaxation analysis
point of view. However, the T̂32(a) coherence contri-
bution can be suppressed [at the cost of signal-to-
noise ratio (S/N) ratio] by decreasing the length of the
final coherence transfer pulse so that � � arccos(1/
�3) � 54.7°. In the latter situation, the relevant
bimodal relaxation function describing the evolution
of the central line under the lock is g22(t1). A simu-
lated spectrum pertaining to the T̂22(s) coherence is
shown in Fig. 5. Note the characteristic line shape of
the bimodal central resonance; the amplitudes of the
fast modes have opposite signs (18).

In the triple-quantum filtration experiment, the opti-
mized pulse angle � � 90° and the phase � is stepped
through the values 30, 90, 150, 210, 270, and 330°,
while the receiver phase is toggled between 0 and 180°
for consecutive scans. Here, the phase �� of the final
pulse is set to 0° for selective detection of T̂33(a) [the
experiment is optimized for the unwanted T̂33(s) coher-
ence if �� � 30�; T̂33(s) belongs to the other subset and

Figure 3 Simulated slice along F2 (at F1 � 0) of the
selectively detected T̂20 coherence in Fig. 2.

Figure 4 Simulated slice along F1 of the selectively de-
tected T̂20 coherence in Fig. 2. The section at F2 � �1/
2� � 1.95 kHz is displayed. Accordingly, the spectrum
pertains to those domains in the powder with a splitting that
just matches the spin-lock strength.

Figure 5 Simulated slice as in Fig. 4, but for the double-
quantum T̂22(s) coherence.
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does not exhibit a central line]. The relevant evolution
function is g33(t1), which exhibits two fast modes and a
slow mode as in the case of the T1� experiment without
coherence transfer. Because of the presence of the prom-
inent narrow component in the corresponding spectrum
(see Fig. 6), the triple-quantum filtration experiment is
less eligible to extract dynamic information. Further-
more, it is selective for nuclei involved in slow molec-
ular motion but does not discriminate between nuclei in
an isotropic and anisotropic environment.

The preparation of the density operator depends on
the RF field strength of the initial pulse. A pure T̂11(a)
initial state can be prepared only if the effects of relax-
ation and the static quadrupolar interaction can be ne-
glected during a sufficiently hard preparation pulse. If
this can not be realized experimentally, the initial density
operator after the phase shift will be in a mixed state
including T̂10, T̂30, T̂11(a), T̂21(s), T̂22(s), T̂31(a), T̂32(a),
and T̂33(a) coherences. The subsequent relaxation of the
central resonance under the RF lock is still given by the
rates in Eqs. [39] and [40], but the amplitudes of the
various modes will be different from those collected in
Table 4. Although the amplitudes can be derived ana-
lytically, it is more convenient to calculate them with a
numeric integration of the master equation (including the
effects of the preparation and coherence transfer pulses
and the phase shifts). However, it has been checked that
under any circumstances the evolutions into T̂20 and
T̂22(s) coherences do not exhibit a slow mode and re-
main bimodal.

CONCLUSIONS

The relaxation dynamics of a system of spin 3/2 under
strong, on-resonance RF irradiation and in the pres-

ence of fluctuating and static quadrupolar interactions
was reviewed. For isotropic systems, we also have
discussed the dynamics under off-resonance spin-
locking conditions and in the Ostroff-Waugh multi-
ple-pulse experiment. In isotropic systems and with a
Wigner transformation to an interaction representa-
tion in which the time-dependent RF part of the Ham-
iltonian is removed, it was shown that the spin dy-
namics under (pulsed) locking conditions is similar to
longitudinal relaxation in the rotating frame but with
modified relaxation rates. Outside the extreme nar-
rowing limit, the relaxation is biexponential and the
fast mode is sensitive to the spectral density on the
order of the spin-lock frequency or the pulse cycle
time in the case of pulsed RF irradiation. Furthermore,
triple-quantum coherences are excited under the lock,
which can be monitored with an additional coherence
transfer pulse at the end of the spin-lock period. In the
presence of static quadrupolar interactions, the exter-
nal parts of the Hamiltonian can not be removed by a
Wigner transformation and the effects of relaxation
were treated as a first-order perturbation to the static
Hamiltonian. The spectra resulting from Fourier
transformation of the evolutions of the on-resonance,
spin-locked magnetization into the various coherences
display two pairs of satellites and, in some cases, a
central line. From the perturbation analysis, it follows
that the central line generally is trimodal, consisting
of a narrow component related to a slowly relaxing
mode and two broad components pertaining to two
faster relaxing modes. Neither the amplitude nor the
width of the narrow component is affected by the
magnitude of the static coupling, whereas the charac-
teristics of the broad components depend in a rather
complicated manner on the relative strengths of the
static interactions. The evolutions into the spin-polar-
ization quadrupolar order and the rank-two double-
quantum coherence do not exhibit a slow mode and
are particularly sensitive to slow molecular motion.
Furthermore, these coherences can be excited only in
the presence of a static coupling and this makes it
possible to discern nuclei in an anisotropic environ-
ment from those in an isotropic environment.

The application of a spin-lock field for the inves-
tigation of molecular dynamics presents several ad-
vantages over the conventional sequences as reviewed
in part I. Although transverse relaxation gives access
to the spectral density at zero frequency only, slow
dynamics is probed more efficiently by applying a
lock through an RF field covering the kilohertz fre-
quency range. For small splittings or in the presence
of a powder-type variation of the static quadrupolar
interaction through the sample, the determination of
the width of the satellite signals by the conventional

Figure 6 Simulated slice as in Fig. 4, but for the triple-
quantum T̂33(a) coherence.
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sequences becomes problematic, if not impossible.
Here, the spin-lock sequence and its variants come to
the rescue and can give valuable information about
slow dynamics, which otherwise can not be obtained.
Furthermore, the spin-lock sequence has proven to be
more efficient than the conventional pulse sequences
in generating an observable signal from ions in aniso-
tropic media in both biological tissue and ordered
complex fluids.
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