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Abstract. - The charge structure function of a rodlike polyelectrolyte within an electroneutral 
coaxial volume can be decomposed into two parts. A first contribution is given by fluctuations. 
The other is related to the existence of concentration profiles, formed by counterions about the 
polyion. Using this simple cell model, it is possible to  identify these contributions separately in 
different wave vector ranges, as illustrated by recent small-angle neutron scattering. We discuss 
the implications of this decomposition, particularly with regard to  the Poisson-Boltzmann 
approximation. 

Introduction. - The charge structure of aqueous polyelectrolyte solutions has two notable 
features. At a small-distance scale, it is characterized by strong time-independent 
inhomogeneities which stem from the charge separation at  the polyion-water interface. On 
the other hand, the overall structure is disordered and its organization is determined by 
fluctuations. This effect is perhaps less conspicuous, but nevertheless fundamental. 

The local inhomogeneities in the structure can be best represented by the one-particle 
density function. Such a function has been successfully calculated, for instance, in the 
framework of the cell model and the Poisson-Boltzmann equation [l]. Its main result is the 
counterion distribution about the cylindrical polyion. 

The correlations revealing the global organization of aqueous polyelectrolyte solutions are 
represented by two-particle densities. Although the latter play an essential role in the 
determination of the structure, little has been achieved in this domain. Calculations in the 
random phase approximation and predictions made on the basis of scaling have been found 
inadequate. The main failure is the fact that these theories are unable to predict the local 
counterion charge distribution about the highly charged polyion. 

Only a highly nonlinear theory will be able to handle the problem satisfactorily. One may, 
in a first approximation, combine the results obtained separately in the framework of the cell 
model and the two-particle theory. In this manner, attractive forces between polyions have 
been predicted to occur [2,3]. Another approach is to begin with the structure of simple 
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electrolyte solutions and subsequently to introduce a dissymmetry in molecular weight and 
charge between anions and cations. In the case of 1 : 1 electrolytes, the charge structure is 
described in terms of the screening effect: in the vicinity of a charge we find a depletion of like 
charges and an enhancement of unlike charges. However, the test charge itself is also part  of 
the screening cloud. In the case of polyelectrolytes, there is an accumulation of counterions 
about the polyion. Due to the huge difference in molecular mass, a stationary-counterion 
concentration profile will be found in the polyion fixed coordinate system. 

Our concern can then be formulated with the ideas expressed in ref. [4] on the structure of 
absorbed-polymer layers. Here the authors were able to separate the contributions of the 
average concentration profile and of the concentration fluctuations to the scattered intensity 
by adsorbed polymers. Their analysis indicates a contribution of fluctuations which becomes 
more important as the wave vector q increases. In our problem, the counterions accumulate 
about the polyion, characterized by an average concentration profile and concentration 
fluctuations. I t  is not a priori  obvious to find out in which part of the wave vector interval the 
fluctuation contribution is more important. We focus here on the small-q limit. 

We propose to gain some insight in this problem by examining a very simple model of 
polyelectrolyte solutions, together with the results of recent scattering experiments [5]. 

The charge structure function and its modelixation. - We consider an aqueous solution of 
volume V containing In polyions, each bearing N negative charges. The polyion charge is 
compensated by a total N ,  I " positively charged counterions. The local charge carrier 
concentrations are denoted by ,s+ (r)  and ,s+ (r) .  The average concentration is given by p +  = 
- ,s- = ,s = N L  \"/V. The local charge concentration is written 

(1) 

- 

Ft  (r)  = ,'+ (r)  - ,'- ( r ) .  

Neutrality requires that on the average the charge is zero: 

The charge structure function is the quantity 

and q is the wave vector. It is important to note that &(q)  reflects exclusively solute 
composition fluctuations, there is no contribution of the solvent-solute concentration 
fluctuations. 

We now consider the simplest possible model of the charge structure function. For  this we 
use the cell model [l], in which the volume V is partitioned into I n  cylindrical volumes: 

(4) 

with L the length of the rod and reell the cell radius. The polyion is positioned on the average 
along the cell axis, but it is allowed to fluctuate about this position (including rod 
deformation). The main assumption is that the cell remains electroneutral. 

The decomposition of the solution into electroneutral cells is clearly an approximation. 
However, in many situations, e.g. in case of DNA fragments, the linear charge density on the 
polyion is so high that most counterions are confined to the immediate vicinity of the polyion. 
The counterion concentration a t  the cell boundary is much lower than the average 

v, = v/, I" = rcr,2,],L, 
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concentration (see ref. [51, fig. 9). Moreover, the interactions between different cell volumes 
can be made arbitrarily small by performing experiments a t  low concentration. 

In the cell model, the counterion concentration ,e+ (r) can be divided into two 
contributions: 

(5) 

where & (r) is the average concentration profile and ++ (r)  the fluctuation. Within the cell 
$+ f ,e+ . The average concentration profile accounts for the accumulation of counterions 
around the charged rod. An analytic expression for this function is derived from the 
Poisson-Boltzmann equation [l]. This concentration profile is uniform along the rod axis and 
cylindrically symmetric. Inserting eq. (5) into (l), one obtains 

lcz(r) = Fi(r) + ;,ez@). (6) 

In eq. (6), only the counterion contribution to the charge fluctuation ;,ez (r)  has been included. 
If desired, the contribution due to polyion fluctuations can be included too. The calculated 
function p,C(r) for a 0.1 mole/l TMA-DNA solution is plotted in ref. [5], fig. 9 as a function of 
the distance r away from the polyon axis. 

,e+ (r)  = F ' i  (r) + a?+ ( r ) ,  

The charge structure function in the cell is now defined as (see eq. (3)) 

(7) csZz (q)  = - \ dr \ dr ' exp [icr. (r - r ' ) l ( , G z  (r)  pz (r ')>vc . 

Due to the fact that the charge density can be divided into an average and a fluctuation 
contribution, the charge structure function can also be considered as the sum of two 
contributions: 

1 

~evcvc v, 

The contribution due to the average concentration profile is given by 

The contribution due to counterion fluctuations reads 

Equations (7)-(10) are the object of the present discussion, as in ref. [4]. We note that, 
although the integral in eq. (9) is limited to the cell, the structure function is meaningful a t  all 
q, if interference effects between different cell volumes are negligible. In fig. 1, the charge 
structure function due to the average counterion distribution 'SZZ (q)  is displayed vs. the 
square of the wave vector q. This result is derived from a calculation using the analytic form 
of the Concentration profile within the cell and averaging over all cell orientations with 
respect to the momentum vector q [5]. 

The long-wavelength l imi t  of the charge structure function, identification of average and 
f luctuation contributions. - The q + 0 limit is of interest, because in this limit it is possible to 
reveal essential differences between the contributions due to the average profile and the 
term due to fluctuations: 'Szz ( q )  and 'szz (q) ,  respectively. 
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Fig. 1. - Charge structure function S,,(q) against q ' :  3 values obtained in the scattering experiment on 
rodlike DNA particles (average length 500 A) a t  a concentration of 0.1 mole P/1[5]; * values derived 
from the partial structu_re functions for charged spherical micelles a t  the same charge carrier 
concentration [6]; - 'S,,(q) calculated using the radial average density profile derived from the 
Poisson-Boltzmann equation in cylindrical geometry [5]; - -- parabolic interpolation of the 
experimental results with 2 q 2 / K 2  and K-' = 4nm. 

For the contribution due to the average profile, we expand eq. (9) in terms of q: 

In the integral, the term independent of q vanishes due to electroneutrality of the cell 
volume. The term proportional to q vanishes due to the cylindrical symmetry of the 
average-charge-density profile. Accordingly, to lowest order in q,  eq. (11) reads 

with 4 = q/  I q I = q/q. The average concentration profile does not contribute a q 2  term in the 
charge structure function. 

For the contribution due to counterion fluctuations the result is different. Expanding 
eq. (10) in powers of q,  one obtains 

Again, the term independent of q vanishes due to electroneutrality. Accordingly, to lowest 
order in q, eq. (13) reads 
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We define 

and as a result 

The quantity tic2 is necessarily positive because the scattered intensity in eq. (16) is a square 
amplitude, and is also finite. Relation (15) then expresses the charge screening due to charge 
fluctuations within the cell. However, K;’ accounts only partially for the real screening 
effect. 

We note that it is necessary to introduce fluctuations with respect to the average profiles 
and/or to take into account the system as a whole, if we wish to satisfy the Stillinger-Lovett 
sum rules. 

Generalization and discussion. - To generalize our results we have to include correlations 
between different cell volumes. These intercell contributions will include both average two- 
particle distributions (i.e. counterion-counterion, plyion-polyion, and polyion-counterion) and 
fluctuation terms. Accordingly, we expect S,, (q)  to be different from ‘S,, (q) .  However, this 
difference will not be as dramatic as in case of the partial structure functions. This is due to a 
partial cancellation of intercell effects in the long-wavelength limit [5]. Because of 
electroneutrality, both S,, and cS,, tend to zero for q + 0. 

Expanding S,, about q + 0, 

S,,W = 2 q 2 / K 2  , (17) 

we now obtain a characteristic macroscopic screening length K - ~ ,  which in solutions of simple 
electrolytes accounts for overall screening [7,8]. It is then appropriate to compare the charge 
structure function S,, ( q )  derived from a scattering experiment (at zero average contrast 191) 
and ‘&,(q) derived from a calculation (see fig. 1). Although the cell parameters have been 
adjusted to obtain the best fit at sufficiently high q values, there remains a difference at  
small q. We argue that this difference is partly due to the contribution of the charge 
fluctuations: ‘SZ2 (q ) .  If we fit the small-q range of the experimentally observed charge 
structure function with a parabola, we find IC-’ = (4 & 1) nm. On the other hand, the 
characteristic decay distance of the counterion profile within the cell can be obtained from the 
solution of the Poisson-Boltzmann equation and amounts to 2.4 nm. 

We have shown that it is necessary to introduce fluctuations, or, equivalently, correlations 
between charges at  different positions to satisfy the Stillinger-Lovett sum rules. In  principle, 
it is possible to set up a system of coupled equations between the one- and two-particle 
density correlation functions [3]. The introduction of the pair correlation changes the 
Poisson-Boltzmann approximation in two ways: 

i) It improves the average counterion density profile with respect to the polyion. In 
cylindrical ’symmetry, however, it does not generate a q2-dependence in ‘S,, . 

ii) The cell model may be extended to include interactions between two polyions. 
Our contention is that small ion charge fluctuations as revealed in s,, ( q )  may give rise to 

attractive forces. This has been calculated for two charged parallel plates immersed in an 
electrolyte solution [3]. Analogously, attractive interactions have been predicted to occur 
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between two parallel rods in a cell model, arising from condensed counterion fluctu- 
ations [2]. 

Of course, the fluctuating charge density should also include fluctuations in the polyion 
structure. They also contribute to ‘SZz and attractive forces between polyions. However, this 
is not expected to perturb the cylindrical symmetry of the average-charge-density profile 
around each polyion. 

* * *  
We have benefitted from discussions with P. G. DE GENNES, L. AWRAY, J. F. JOANNY and 

M. KUIL. 
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