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For spin S = 3/2 the time evolution of the density operator under spin-locking is described. It 
is shown that outside the extreme narrowing limit triple-quantum coherences are excited. An 
experiment is proposed to monitor these coherences. The corresponding signal evolves 
according to a simple relaxation function which is suitable for fitting. 

INTRODUCTION 

In condensed matter, the spin S = 3/2 quadrupolar nu­
clei (e.g., 7Li, 23Na, 87Rb, 35Cl, and 81Br) occur rather fre­
quently and may experience fluctuating electric field gradi­
ents. For instance, in synthetic and biological polymer 
solutions, 1.2 and other biological systems,3 the magnetic re­
laxation behavior is an important probe to study the dynam­
ics and interactions of the small ions. Longitudinal and 
transverse relaxation rates are sensitive to the spectral densi­
ties of the fluctuating field gradient at zero, one, and two 
times the Larmor frequency, - rHo. The Larmor frequency 
is usually of the order MHz. In the presence of slowly fluctu­
ating processes, the spectral density function shows a disper­
sion at relatively low frequencies of the order kHz. Accord­
ingly, transverse relaxation experiments give access to the 
zero frequency component of this dispersion only. However, 
the Tip experiment is an excellent tool to investigate these 
slowly fluctuating processes. This is because the spin-lock 
field strength HI can be varied easily to probe the spectral 
density at frequencies of the order of the precession frequen­
cy with respect to the spin-lock field, - rHI' The problem of 
relaxation during spin-locking has been discussed extensive­
ly by Blicharski.4 However, the discussion of quadrupolar 
relaxation has been confined to spin quantum number S = 1. 

Recently, it has been recognized that due to spin S>3/2 
relaxation outside the extreme narrowing limit multiple­
quantum coherences may be excited.5,6 The spin S = 3/2 
relaxation of zero, single, and multiple quantum coherences 
in a zero average electric field gradient has extensively been 
discussed by Jaccard et al.6 The effect of a static quadrupolar 
coupling on the relaxation and precession of the spin S 
= 3/2 system has been considered in a previous paper.7 In 

the present contribution, spin S = 3/2 Tip relaxation will be 
treated. Expressions are presented which describe the time 
evolution of the density operator during spin-locking. It is 
shown that spin-locking excites triple-quantum coherences 
for S = 3/2, provided the relaxation to be outside the ex­
treme narrowing limit, 

After spin-locking, the signal may directly be detected. 
However, outside the extreme narrowing limit, this conven­
tional experiment results in a complicated functional form of 
the detected signal. Therefore, an experiment involving co­
herence transfer is designed which allows detection of the 
excited triple-quantum coherences. In this experiment, after 
the spin-lock period an additional1T/2 pulse is applied. This 

pulse converts the excited triple-quantum coherences into 
single-quantum coherences. Due to transverse relaxation, 
the latter coherences are observable during the detection pe­
riod. The corresponding signal contribution evolves accord­
ing to a simple relaxation function and is more suitable for 
fitting. 

In this work, the irreducible tensor operators, the relax­
ation behavior, and coherence transfer are described by the 
formalism which has extensively been used by Muller et al., 5 

Jaccard et al., 6 and the present author.7 For a description of 
this formalism the reader is referred to these papers. 

PREPARATION AND SPIN LOCKING 

To prepare the spin system, an initial (1T/2)y pulse is 
applied. Dropping the factors expressing the number of 
spins and the temperature, the density operator in the rotat­
ing frame is 

u*(t=O) =Sx = (5/2)1/2(TI_1 - T 1 + 1 )· (1) 

The irreducible tensor operators are normalized according 
to Ref. S. 

After this initial (1T /2) y pulse, a spin-lock pulse with a 
field strength HI along the x axis is applied. To calculate the 
time evolution of the density operator due to relaxation dur­
ing the spin-lock period, it is convenient to define an interac­
tion representation where the HI field disappears. For this 
purpose, the density operator in the rotating frame is trans­
formed into the doubly rotating tilted frame. 4 A possible 
nonzero average electric field gradient has been ignored. If 
the general form of the density operator in the rotating frame 
is 

(2) 

then in the doubly rotating tilted frame the density operator 
is represented by 

u** = I elm TlkD k~ ( - Wit, - {J,O). (3) 
k,l,m 

In this transformation WI = - rHI and on-resonance {J is 
the angle between the direction of the static Zeeman field Ho 
and the spin-lock field HI' The sign conventions and angle 
definitions of Rose are adopted. 8 In the present contribution, 
the offset of the pulse carrier frequency from exact reso­
nance, - rHo, equals zero. The spin-lock pulse is applied 
exactly on resonance. Transforming Eq. (1) into the doubly 
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rotating tilted frame, one obtains, according to Eqs. (2) and 
(3) with P = 1T12, 

u**(t = 0) = SII 2 T IO. (4) 

During the spin-lock period, the density operator 
evolves due to longitudinal Tip relaxation. As shown in the 
Appendix, the time dependence of the density operator in 
the doubly rotating tilted frame is analogous to the time de­
pendence in the rotating frame, but with spectral densities 
l:~ = _ 21d k~ ( - P> 12J km (k{J)1 + m{J)o)vs Jdk{J)o), respec­
tively. The spectral densities are defined in the Appendix. In 
the rotating frame, the effect oflongitudinal relaxation reads 
with the arrow notation6 

R (0) 

TIO -+ TlOfl?)(t) + T30f~?)(t)· (S) 

The relaxation functions are given by 

fl?)(t) = (1/S)(4 exp{R ~O)t} + exp{R ~O)t}), (6) 

f~?)(t) = (2/S)( -exp{R~O)t}+exp{R~O)t}), (7) 

with rates 

In the limit {J)I ~{J)o, for m:;60 the spectral density function 
has the property 

J km (k{J)1 + m{J)o) '::::1om (m{J)o) = Jo _ m ( - m{J)o)' 
(1S) 

Accordingly, withP = 1T12 and {J)I ~(J)o, the relaxation rates 
are approximately represented by 

R ~P) = - (eQh21Ty{(3/4)J2o(~I) 

+ JOI({J)o) + (1/4)J02 (2{J)o)}' 

Rt) = - (e
Q

h
21TYVol({J)o) + Jo2 (2{J)o)}' 

(16) 

(17) 

The R ~P) component contains the spectral density at fre­
quency 2{J)1 and, hence, is a probe to study slow motion. 

After the spin-lock period, the HI field is switched off. 
Now, the density operator has to be transformed back into 
the rotating frame. If the general form of the density opera­
tor in the doubly rotating tilted frame is 

(18) 

then in the rotating frame the density operator is given by 

(8) 

(9) 

The superscript (0) denotes longitudinal relaxation in the 
rotating frame. In the doubly rotating tilted frame, the time 
dependence of the spin density operator due to longitudinal 
Tip relaxation is analogous, but with different rates. With 
Eqs. (S)-(7), and changing the superscript (0) into (p) to 
discern Tip relaxation, one obtains the time evolution 

a**(tl) = SI/2{TlOflf)(tI) + T30 fW(tI)} (10) 

with the relaxation functions 

flf)(tl) = (1/S)(4 exp{R ~P)tl} + exp{R t)tl}), 
(11 ) 

fW(tI) = (2/S)( - exp{R ~P)tl} + exp{R t)tl}). 
(12) 

To obtain the relaxation rates R ~P) and R t), in Eqs. (8) 
and (9) the spectral densitiesJk (k{J)o) have to be substituted 
by l:~ = _ 21d k~ ( - P> 12 J km (k{J)1 + m{J)o). Accordingly, 
one has 

(13) 

(14) 

a* = L. hIm TlkD k~ (O,P,{J)It)· (19) 
k.l.m 

Backtransforming Eq. (10) into the rotating frame, then 
yields according to Eqs. (18) and (19) with P = 1T /2, 

a*(tl) =U*(tI'P= ± 1) +U*(tI'P= ±3) (20) 

with 

a*(tI'P = ± 1) 

= (S/2)1/2{(TI _ I - TI + I )flf)(tl) 

- (3/8)1/2(T3_ 1 - T3+I)f~f)(tI)}' (21) 

a*(tI'P= ±3) = (S/4)(T3_ 3 - T3+3)j~f)(tI)' (22) 

Equations (21) and (22) represent order P = ± 1 single­
and P = ± 3 triple-quantum coherences, respectively. 
Hence, due to Tip relaxation multiple-quantum coherences 
are excited. In the extreme narrowing limit, the function 
fW (t I) vanishes and only single-quantum coherences are 
excited. This relaxation behavior is similar to longitudinal 
relaxation without a spin-lock field (but with modified 
rates).6 After the spin-lock period, the signal can directly be 
detected. Another option is to use the multiple-quantum co­
herences, which results in a more simple relaxation behav-
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ior. For this purpose, an additional (1T/2)x pulse has to be 
applied to convert the T3 ± 3 coherences into T3 ± I coher­
ences. The latter coherences may evolve into observable 
TI ± I coherences due to transverse relaxation during the de­
tection period. 

DIRECT DETECTION 

After switching off the spin-lock field the density opera­
tor evolves due to transverse relaxation. Under relaxation, 
the rank I of the tensor operators may change, but the order p 
is conserved.9 Hence, the multiple-quantum coherences 
u* (t I ,p = ± 3) do not become apparent under direct detec­
tion. For order p = ± 1 coherences, the effect of transverse 
relaxation reads with the arrow notation6 

(23) 

(24) 

u*(tI,t2,P= ±1)=(5/2)1/2(TI _ I -TI + I ) 

with the relaxation functions 

/l:'(t2) = (1/5)(3 exp{R P)t2} + 2 exp{R i l )t2}), (25) 

/g)(t2) =/~:)(t2) 

= (61/2/5) (exp{R P)t2} - exp{R i l )t2}), (26) 

/g)(t2) = (1/5) (2 exp{R P)t2} + 3 exp{R il)t2}) (27) 

with rates 

R (1)_ 
I -

R (1)_ 
2 -

(eQ
h
21Ty {Jo(O) + J I (mo)}, 

(eQ
h
21TY{JI (mo) + J2 (2mO)}' 

(28) 

(29) 

The superscript (1) denotes transverse relaxation. With 
Eqs. (20), (21), (23), and (24) and focusing on order 
p = ± 1 coherences during the detection period the density 
operator is given by 

X (f\~)(tl )/\:) (t2) - (3/8) 1/2/if> (tl )/g) (t2)} 

+ (5/2) 1/2( T3 _ I - T3 + I )(f\~) (tl )/W(t2) - (3/8) 1/2/~~) (tl )/~~) (t2)}' (30) 

Under direct detection, only the TI ± I coherences become 
apparent. Hence, the observed signal is represented by 

S(tI,t2) =/\~)(t1)/\:)(t2) - (3/8)1/2/~~)(tI)/\p(t2)' 
(31) 

Note that the signal under direct detection is a complicated 
function, which is less suitable for fitting. The second term 
on the right-hand side ofEq. (31) vanishes in the limit t2 -+ O. 
Consequently, the effect of this interference term may be 
minimized by recording the (extrapolated) amplitude of the 
detected signal directly after the spin-lock period [i.e., 
S(tI,t2-+O) ]. 

COHERENCE TRANSFER 
Another strategy is to monitor the excited triple-quan­

tum coherences by applying a pulse with a phase + x after 
the spin-lock period. The separation of coherences may be 
obtained by time-proportional phase incrementation 
(TPPI9

•
1o

) of the excitation and spin-lock pulses. The se­
quence of Fig. 1 is proposed. The phase rp in Fig. 1 is defined 

IH~ 

•• 

FIG. I. Pulse sequence to monitor the triple-quantum coherences after 
spin-locking. The phase q; has to be incremented proportional to the evolu­
tion time t, (TPPI). 

as a positive excursion with respect to the y axis, in accor­
dance with the definitions of the Euler angles. 5.8 

The effect of pulses is described by a simple transforma­
tion. The rank I is conserved, the order m may change. 91f the 
density operator has the general form 

(32) 

then after the pulse with a flip angle /3 and phase rp' the 
density operator is represented by5 

0-*= 'LClmTlkdi'!n(/3)exp{-i(k-m)rp'} (33) 
k,l.m 

in which k - m is the change of coherence order induced by 
the pulse. The reduced matrix elements d i'!n (/3) are conve­
niently tabulated in Ref. 5. 

With Eqs. (32) and (33), after coherence transfer with 
a 1T/2 pulse and phase rp' = - 1T12, the density operator 
[Eq. (21) and (22)] is represented by 

u*(tI'P = ± 1) = (5/2) 1/2{(TI _ 1 - TI + 1 )/\~)(tl) 

+ (6 1/2/16)( T3 - I - T3+ 1 )/~~) (tl) 

+ (90 1
/
2/16)(T3_ 3 - T3+ 3 )/if>(tI)}' 

0-* (t1'P = ± 3) = (5/4) 

X{ - (15 1/2/4)( T3 _I - T3+ 1 )/~~)(tl) 

+ (1/4)(T3_ 3 - T3+3)/~~)(tI)}' 

(34) 

(35) 

Now, during detection the T3 ± 1 coherences may evolve into 
observable TI ± I coherences according to Eq. (24). 
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In the 2D experiment with TPPI, four distinct signal 
contributions are detected. With Eqs. (23), (24), (34), and 
(35), and collecting TI ± I coherences only, these contribu­
tions are 

S(tI,t2,P = ± 1) = {(1I2>Jlf)(tI)/I:)(t2) 

+ (61/2/32)/~f)(tI)/g>(t2)} (36) 

Xexp( += iq?), 

S(tI,t2,P = ± 3) = - (5/32)61/2/~f)(tI)/g>(t2) 

Xexp( + 3iq?) (37) 

in which q? is the phase defined in Fig. 1. The signal originat­
ing from the triple-quantum coherences has a relatively sim­
ple form and is suitable for fitting. Because the signal has to 
be detected as a function of t I, a true 2D experiment has to be 
performed. The signals are separated by time-proportional 
incrementation of the phase q? = nll.q? TPPI, with the counter 
n = t l /ll.t l •

9
•
10 The symmetrically disposed signals corre­

sponding to ± P coherences have equal amplitUdes. There­
fore, a real cosine Fourier transformation with respect to 
Il.q? TPPI results in a pure absorption spectrum after phase 
correction. 
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APPENDIX: ANALOGY OF THE TIME DEPENDENCE OF 
THE DENSITY OPERATOR IN THE DOUBLY ROTATING 
TILTED FRAME AND ROTATING FRAME. 

A general expression of the time evolution of the density 
operator due to quadrupolar relaxation in the doubly rotat­
ing tilted frame is derived, independent of the spin quantum 
number S. It is shown how the time dependence ofthe den­
sity operator in the rotating frame has to be modified to 
include the effect of spin-locking. 

In the doubly rotating tilted frame, where no external 
fields appear explicitly, the time evolution of the density op­
erator U U is given byll 

du** r"" ---;Jt= - Jo ([Hu(t),[Hu(t-r),u**(t)]])dr. 

(A1) 

The conditions for the validity of Eq. (A1) have been dis­
cussed by Abragam. II In the doubly rotating tilted frame, 
the quadrupolar coupling Hamiltonian H U is given by4 

2 

HU = C L (-1)mAlkDk~ 
m.k= - 2 

x ( - Wit, - /3, - wOt)F2 _ m (A2) 

in which C = (eQ1T)/S(2S - 1 )h, the nuclear spin operator 
is denoted by A 2m , and F2m denotes the field gradient ten­
sor. 12.13 The field gradient tensor takes the form: FlO 
= (1I2)Vzz , F2±1 = + (6-1/2)(Vxz ±iVyz ), and F2±2 
= (6 - 1/2/2) (Vxx - Vyy ± 2iVxy ). The transformation 
from the laboratory frame to the doubly rotating tilted frame 
is effected by the Wigner matrix D k~ ( - Wit, - /3, - wot) 
as described before. Inserting Eq. (A2) into Eq. (AI), then 
yields 

du** 
--= 

dt 

2 

- C l L (- 1)m + m' exp{i[ (m + m')wo 
m,k, 
m',k'= -2 

+ (k + k')wdd[A 2k ,[A2k .,u**]] 

Xd k~ ( - /3)d k~~' ( - /3) 

xi"" (F2_ m(t)F2_ m,(t-r» 

xexp{ - i(k 'WI + m'wo)r}dr. (A3) 

Finally, restricting to the secular terms with m = - m' and 
k = - k " one obtains the general expression 

du** 

dt 

2 

C 2 L [A 2k ,[A ik'u**]] 
k= -2 

2 

X L Idk~(-/3WJkm(kwI+mwo) (A4) 
m= -2 

with the spectral densities 

J km (kw i + mwo) = (112) f: "" (F~m (t)F2m (t - r» 

xexp{i(kw i + mwo)r}dr. (AS) 

The imaginary part of the integral in Eq. (A3) has been 
neglected. This part can be included in the Zeeman Hamilto­
nian resulting in a very small second-order frequency 
shift. 11

•
14 For comparison, the corresponding equation for 

the time evolution of the density operator without the pres­
ence of a spin-lock field is given byl1.12.13 

du* 

dt 

with 

2 

- C 2 L [A 2k ,[A ik,u*]]Jk(kwo) 
k= -2 

(A6) 

Jk (kwo) = (/2) f: "" (F~k (t)F2k (t - r) )exp{ikwor}dr. 

(A7) 

The spin operator double commutators in Eqs. (A4) and 
(A6) have the same functional form. Hence, to modify the 
time dependence of the density operator in the rotating 
frame [Le., Eq. (A6)] to include the effect of spin-locking, 
one has to substitute the spectral densities J k (kwo) by 
l:~ = _ lid k~ ( - /3) 12 Jkm (kW I + mwo)· 
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