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The time evolution of the spin S = 3/2 density operator due to relaxation in the presence of a 
sequence of (1T/2) pulses has been calculated using perturbation theory in an interaction 
representation in which no external time-dependent rf fields occur. It is shown that the 
relaxation under the effect of the pulse train is similar to TIp relaxation. If the magnetization is 
sampled between the pulses, outside extreme narrowing conditions the observed signal is 
characterized by a biexponential decay. The amplitude ratio of the fast and slowly relaxing 
component equals 0.8:0.2. The rate of the fast relaxing component is sensitive to the pulse cycle 
time in the presence of slowly fluctuating electric-field gradients. A full expression of the 
relevant spectral density function valid for (1T /2) pulses with arbitrary pulse width has been 
derived. In this derivation, the processes involved in determining the loss of correlation of the 
quadrupolar interaction are assumed to be independent and characterized by exponential 
correlation functions. Due to relaxation under the effect of the (1T /2) pulse train triple­
quantum coherences may be excited. The latter coherences can be monitored by applying an 
additional coherence transfer pulse after the pulse train. The relaxation of sodium in an ion 
exchange resin in the presence of the (1T /2) pulse sequence has experimentally been studied 
and agrees with the theoretical analysis. 

INTRODUCTION 

Spin quantum number S = 3/2 NMR is an important 
probe to investigate the intricate behavior of small ions in a 
wide variety of condensed matter. Examples ofthese systems 
are synthetic and biological polymer solutions,I.2 ionic con­
ductors,3 and other biological systems.4 The most impor­
tant spin S = 3/2 nuclei are 7Li, 23Na, 87Rb, 35CI, and 81Br. 
For these nuclei, the dominant relaxation mechanism is the 
electric quadrupolar interaction. Quadrupolar relaxation is 
determined by the magnitude and temporal duration of elec­
tric-field-gradients generated by the surrounding medium. 
Longitudinal and transverse magnetic relaxation experi­
ments are sensitive to the spectral density of these fluctu­
ations at zero, one, and two times the Larmor frequency with 
respect to the static field Ho. At the present-day laboratory 
field strengths this Larmor frequency is usually of the order 
of MHz. In many complex (macromolecular) systems, the 
characteristic correlation times of the electric-field-gradient 
fluctuations may be relatively long. Accordingly, the corre­
sponding spectral density function may show a dispersion at 
frequencies far below the relatively high Larmor frequency. 
In this situation, transverse relaxation gives access to the 
zero-frequency component of this dispersion only. 

The TIp experiment is sensitive to the spectral density at 
two times the precession frequency with respect to the spin­
lock field. The latter frequency is of the order of kHz and 
depends on the transmitter power level. Accordingly, the 
spin-lock experiment may yield information about slowly 
fluctuating processes. In a previous communication, the 
time evolution of the spin S = 3/2 density operator under 
spin-locking has been analyzed.5 It was shown that outside 
the extreme narrowing limit the relaxation becomes biex-

ponential. Furthermore, due to this relaxation triple-quan­
tum coherences are excited. Similar behavior has been re­
ported for longitudinal and transverse relaxation 
experiments.6

•
7 The resulting theoretical expressions de­

scribing the relaxation behavior under spin-locking have ex­
perimentally been verified in Ref. 8. 

However, the continuous spin-lock experiment is char­
acterized by a number of experimental drawbacks. The sig­
nal has to be detected as a function of the spin-lock time in a 
subsequent manner. Accordingly, a considerable amount of 
spectrometer time is involved. In the present contribution it 
will be shown that for spin S = 3/2 quadrupolar relaxation 
the spin-lock irradiation can be replaced by a (1T/2) pulse 
train. In this pulsed experiment the signal can be sampled 
between the pulses, and, hence, the relaxation curve is re­
corded in one scan. Another problem is the variation of the 
HI power level to probe the spectral density at two times the 
precession frequency with respect to the spin-lock field. A 
simultaneous power level and phase switch between the 
preparation pulse and the spin-lock field is electronically dif­
ficult to achieve. In the pulsed experiment the corresponding 
parameter is the pulse cycle time, which can easily be varied. 

The applicability of the (1T12) pulse train (Mansfield­
Ware MW-4 sequence) to study dipolar relaxation in solids 
has been analyzed by several authors.9

-
11 For a comprehen­

sive review the reader is referred to the book by Mehring. 12 
Quadrupolar relaxation has been treated by Blicharski. 13 

However, in the latter contribution the discussion was con­
fined to spinS = 1 in the limit of D-function pulses. Recently, 
Vega, Poupko, and Luz analyzed the (1T /2) pulse train for 
spin S = 1 in a static field gradient undergoing exchange in a 
liquid-crystalline solvent. 14 They reported a full expression 
of the pulse spacing dependent relaxation rate valid for 
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(1T/2) pulses with arbitrary pulse width. Rhim, Burum, and 
Elleman 10 and Vega and Vaughan II reported similar equa­
tions, but for dipolar relaxation in solids. 

In the present contribution, relaxation under the (1T/2) 
pulse train will be analyzed for spin S = 3/2 quadrupolar 
relaxation. This experiment is similar to the Carr-Purcell­
Gill-Meiboom (CPGM) pulse train, but with (1T/2) vs (1T) 
pulses. In the latter experiment, shift-like (linear in the spin 
operator) terms in the Hamiltonian such as the scalar inter­
action between unlike spins are sign reversed by every (1T) 
pulse. In a similar way, for a second-rank quadrupolar or 
dipolar interaction the relevant terms [i.e., the terms involv­
ing m = 0, k = ± 2 in Eq. (2) below] in the coupling Ham­
iltonian can be sign modulated by a (1T/2) pulse train. Ac­
cordingly, the latter experiment is sometimes referred to as 
the quadrupolar echo train experiment. 14 This sign modula­
tion results in pulse cycle time-dependent relaxation rates 
provided the time scale of the slowly fluctuating interaction 
to be of the order of the cycle time. The time evolution of the 
density operator will be calculated using perturbation (Red­
field) theory in an interaction representation in which no 
external time-dependent rffields occur. The method follows 
closely the formalism used for the description ofCPGM ex­
periments in the presence of chemical exchange. 15 For the 
quadrupolar interaction mechanism, the characteristic re­
laxation times can be relatively short of the order of millisec­
onds. Accordingly, it may be necessary to use relatively 
short cycle times and the effect of the finite pulse width has 
to be taken into account. 14 

Using a convenient interaction representation it is 
shown that the relaxation under the (1T/2) pulse train is 
similar to TIp relaxation. The relaxation is biexponential 
(outside the extreme narrowing limit) and the rate of the 
fast relaxing component may be sensitive to the pulse cycle 
time. An explicit expression of the cycle time and pulse­
width-dependent spectral density function will be derived, 
assuming an exponential correlation function. Due to relax­
ation during the pulse train triple-quantum coherences are 
generated. These coherences may be monitored in a similar 
manner as in the previously discussed spin-lock experiment 
with coherence transfer. 5 Some experimental results are pre­
sented which confirm the present analysis and the similarity 
of the spin-lock and quadrupolar echo train experiments. 
Finally, the conclusions are summarized and both experi­
mental approaches are compared. 

In the present contribution extensive use will be made of 
irreducible tensor operators in the context of relaxation and 
coherence transfer. This formalism has extensively been 
used in the papers by Jaccard, Wimperis, and Bodenhausen 7 

and the present author. 5
,16 Accordingly, for a description of 

the formalism the reader is referred to these papers. 

RELAXATION DIFFERENTIAL EQUATION 

The quadrupolar echo analog of the CPGM experiment 
can be represented by the pulse sequence: 
(1T/2)y - [T /2 - (1T/2)" - T /2] n' To prepare the spin 
system, the magnetization is transferred to the + x axis by 
an initial (1T /2) y pulse. After this initial pulse, the density 
operator is represented by 

(1) 

in which the asterisk refers to the Larmor frequency rotating 
frame. Factors expressing the number of spins and the tem­
perature have been dropped, since they are irrelevant for the 
present analysis. The unit tensor operators Tim are normal­
ized according to 

Tr{Tlm T;'m'} = 01l·Omm· with Tim = ( - l)mTI _ m' 

After the magnetization has been transferred to the + x 
axis a train of equal (1T /2)" pulses is applied. This experi­
ment is a pulsed version of the spin-lock experiment and is 
sometimes referred to as pulsed spin-locking. 10 The time de­
pendence of the density operator under the influence of this 
pulsed spin-lock field has to be calculated. This is most con­
veniently performed in an interaction representation in 
which no external time-dependent rf fields occur. This inter­
action representation is a pulsed version of the doubly rotat­
ing tilted frame, which has previously been used to describe 
continuous spin-locking.5,17 However, in the pulsed spin­
lock experiment the amplitude of the applied HI field is time 
dependent, which leads to a modification ofthe transforma­
tion matrix. This interaction representation is referred to as 
the rotating tilted toggling frame (R TIF). 

The present interaction representation is a simplified 
version of the weIl-known "nodding" frame. 18.19 The latter 
frame was originally devised to describe pulse sequences 
such as the four pulse sequence W AHUHA and derivatives 
thereof. In these pulse sequences the external HI field is both 
phase and amplitude modulated. In the interaction represen­
tation, the fluctuating interaction Hamiltonian is written in 
terms of switch functions to take into account the phase and 
amplitude modulation of the applied rf. Subsequently, these 
switch functions are expanded into Fourier series to calcu­
late the relaxation using a perturbation analysis. ls In the 
present situation, the pulse train is given along the + x-axis 
(amplitude modulation only). In the absence of rf phase 
modulation, the effect of the irradiation can be translated 
into a time-modulated argument of the Wigner transforma­
tion matrix. 

In the RTIF (indicated by the double asterisk), the 
quadrupoJar coupling Hamiltonian ~* reads 

2 

~*(t) = C I (-l)mT2k 
m.k = - 2 

XD k~ [ - Edt 'ml (t '), - 1T/2, - mot ]F2 _ m' 

(2) 

In this expression C = 3 eQ /[S(2S - 1 )17], Tn denotes the 
nuclear-spin operator, and the field gradient tensor is given 
by F2m •

20
,21 The field gradient tensor elements read as 

F20 = (1/2) Vz.' F2 ± I = + (6 - 112)( V". ± iVy.), and 
Fa 2 = (6 - 1/2/2)( V xx - Vyy ± 2iV"y ). The Wigner ma­
trix transforms the (laboratory frame defined) spin-opera­
tor tensor T2k to the R TIF. In this transformation 
mo = - rHo, ml (t) = - rHI (t), and it is implicitly as­
sumed that the angle between the direction of the Zeeman 
field Ho and the pulsed HI field equals 1T/2. Furthermore, 
the offset of the pulse carrier frequency from exact resonance 
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equals zero. The HI (t) field is applied exactly on resonance. 
In the Wigner matrix argument the sign and angle conven­
tions of Rose are adopted.22 

The difference between the doubly rotating tilted frame 
and the R TIF can be traced back to the Wigner matrix argu­
ment in Eq. (2). In the spin-lock experiment one applies a 
continuous HI field and the integral S~ dt' CUI (t') simply 
reduces to CUI t. Substituting this value into Eq. (2), one re­
covers the corresponding Eq. (A2) in Ref. 5 for the contin­
uous spin-lock case. 

The time-dependent WI (t) is schematically depicted in 
Fig. I (a), in which the various time intervals are defined. 
The time-dependent WI (t) is periodic in the cycle time T, 

(3) 

in which to denotes the time elapsed after the nth echo. Ac­
cordingly, to is defined in the time interval O,to < T. The 
time integral of W I (t) can be computed step by step for each 
time period. (An alternative is to expand the periodical irra­
diation into a Fourier series which can subsequently be inte­
grated term by term.) The result is given by 

fIb [ 'TTt 'TT I - 0 ] I 'b dt'wl(t') = -+---S(t) 
I. 2T 4 0 10 

(4) 

with the duty cycle parameter defined as 8 = l'plT, 0 < 0, 1. 
The first term on the right-hand side of Eq. (4) denotes the 
average value, whereas the second term accounts for the pe­
riodicity in the irradiation. Accordingly, in the limiting case 
of continuous spin-locking the latter term reduces to zero. 
The function S( t) is depicted in Fig. 1 (b) and is periodic in 
the cycle time T: 

Set) = SenT + to) = S(to)' (5) 

In the first period the function S( to) reads 

-2 0 T 1-8 to, 0<to,(T-'1'p )/2 

2 
-l+T'to, (T-'1'p )/2,to,(T+'1'p )/2 

28 2 8 ------t 
1 - 0 T 1 _ 0 0' 

(6) 

To evaluate the time evolution of the spin system during 
the (-IT /2) x pulse train, the density operator in the Larmor 
frequency rotating frame [Eq. ( 1) ] has to be transformed to 
the R TIF. If the general form of the density operator in the 
rotating frame is 

0'* = L elm Tim' 
I,m 

(7) 

then in the R TTF the density operator is represented by 

0'** = L elm TlkD k~ [ - Sa' dt' WI (t '), - 'TT12,0]. (8) 
~'m 0 

Transforming Eq. (1) into the RTTF, one obtains according 
to Eq. (7) and (8) 

(9) 

The magnetization is along the z axis of the toggling frame. 
Accordingly, in the RTIF the density operator contains the 
TIO tensor component only. 

During the ('TT12) x pulse train, the density operator 
evolves due to relaxation. In the RTIF, where no external rf 
fields appear, the time dependence of the density operator 
can be evaluated using the well-known perturbation equa­
tion23 

_0'_ = _ d'1'([~*(t),[ K~*(t -1'),0'**(t)] p. d ** Sa"" 
dt 0 

( 10) 

The conditions for the validity of Eq. (10) have been dis­
cussed by Abragam. 23 Substituting Eq. (2) into (10), then 
yields 

du** 
--= 

dt 

2 

_C 2 L 
m,k. 

( - l)m+m'exp{;[ (m + m')wot + (k + k') f dt' WI (t'»)} 
m',k'= -2 , 

X [Tn' [T2k' ,u**]]d k~ ( - 'TT/2)d k~;'" ( - 'TT12) 

X Sa"" d'1'(F2 - m (t)F2 - m' (t - '1') )exp{ - i[ m'wo'1' + k I f- T dt' WI (t ') }} . (11 ) 

In Eq, (11) the nonsecular terms with m =f - m' are 
unimportant, because these terms oscillate with frequencies 
(m + m') wo' 23 The only important terms involving k and k ' 
are those for which the exponential 
exp [ i( k + k ') S~ dt' WI (t ')] equals unity for all times t. 
Inserting the time integral of WI (t') [Eq. (4)], together 
with Eq. (5) and with t = nT + to, this exponential reduces 
to 

(12) 

With k + k I = 0 this exponential equals unity for all times, 
irrespective of the pulse width '1'p' However, in the 8-func­
tion pulses limit, this exponential equals unity with 
k + k I = ± 4 too. If the finite pulse width is not negligible, 
the exponential with k + k I = ± 4 becomes time dependent 
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n 

2Tp I§l ~ 
~ nT (n.1)T 

w,(t) 1-----I""'!-----1--P--I--+-I! ~ I ~ I t" (A) 
I I '-l 
~ !Tp' 
I I I I 
I I I I 
I I I I 

1 I : I 
, I, 

f I 

S (t ) k---H'---->t. __ -++---'k;,--{ f~''+--''''"_+_' f----',,",.-

FIG. I. (A) Schematic representation of W, (t) = - yH, (r). (B) Sche­
matic representation of the function SU) defined by Eqs. (5) and (6). 

during the pulse. The remaining terms are unimportant 
since they modulate the right-hand side of Eq. (11) at a 
frequency ofthe order liT. Furthermore, in the Appendix it 
is shown that in the latter equation the terms involving odd 
values of k + k ' vanish. This is due to the symmetry proper­
ties of the reduced Wigner matrix elements and the condi­
tion Eq. (19) derived below. 

It can be shown that for spin S = 3/2 the terms involv­
ing k + k' = ± 4 are unimportant even in the situation of 8-
function pulses. This is most easily derived from the proper­
ties of the spin-operator double commutator. 2l

,22 The 
expansion of the density operator in irreducible tensors in 
Eq. (11) yields a set of equations in which the subset TIO and 
T30 is decoupled from any other Tim' The double commuta­
tors reduce to combinations of Tlk + k' which vanish when 
k + k' = ± 4 and S = 3/2. 

As will become apparent shortly, the restriction to the 
secular terms with k + k' = 0 will have an important conse­
quence. Due to this restriction, the relaxation during the 
( 1T 12) x pulse train will be similar to Tip relaxation instead of 
T2 relaxation, as one might intuitively expect. Both relaxa­
tion processes are characterized by a biexponential decay 
curvP., but with different rates. Moreover, for Tip relaxation 
the amplitude ratio of the fast and slowly relaxing compo­
nents equals 0.8:0.2, whereas for T2 relaxation this corre­
sponding ratio is given by 0.6:0.4.5 Accordingly, it might be 
worthwhile to consider the situation for a Carr-Purcell­
Gill-Meiboom transverse relaxation experiment using a 
pulse train consisting of (1T) x pulses. In this situation, an 
equation similar to Eq. (12) can be derived, but with 1T12 
substituted by 1T. This expression equals unity for all times 
with k + k ' = 0 and, in the case of 8-function pulses, with 
k + k I = ± 2 and k + k I = ± 4. The terms involving 
k + k I = ± 4, ± 2 are responsible for the difference 
between transverse and Tip relaxation behavior. However, if 
the finite pulse width is not negligible, the latter terms will be 
gradually decoupled in the relaxation master Eq. (11), due 
to the spin-lock effect during the pulses. Consequently, the 
recorded CPGM decay curve will be more similar to the Tip 

instead of the transverse relaxation decay curve. This situa­
tion is very difficult to analyze and is beyond the scope of this 
contribution. However, due to this effect, for the determina­
tion of relatively short transverse relaxation times, the con­
ventional spin-echo method is clearly to be preferred. 

Restricting to the secular terms with m = - m' and 

k = - k', the differential equation describing the time evo­
lution of the density operator reads 

dO"** 2 
--= - C 2 I [T2k ,[Tik'u**]] 

dt k= - 2 

2 

X I Id!c7,; ( - 1T12) 12 
m= -2 

X f'" dr<F~m (t)F2m (t - r) > 

xexpHmcuor+ k f~T dt' CUt (t')]}, 

(13 ) 

Using Eqs. (4) and (5), together with t = n T + to, it can 
been shown that S: _ T dt' CUt (t ') is periodic in the cycle time 
T, i.e., 

f~rdt'CUI(t')= f~o_/t'cuI(t')' (14) 

Generally, the signal will be stroboscopically sampled at the 
echo positions at times tn = nT. Accordingly, the quantity 
of interest is given by 

du** u**( [n + 11n·- u**([nT]) 
--=---'-~"':"""--!'--'---""':""::--=-":"" 

dtn T 

I l<n+ I)T dO"** 
=- dt--. 

T nT dt 
(15) 

The characteristic relaxation times are usually much longer 
than the cycle time T. Hence, the relative change in 0"** over 
the period T is assumed to be small: 

([ u**(nT + to) - u**(nn ]lu**(nn}~ 1. 

Inserting Eq. (13) into Eq. (15), together with Eq. (14) and 
the latter assumption, the desired differential equation for 
the stroboscopically sampled density operator takes the 
form 

du** 2 

- C 2 2: [T2k ,[Tik'u**]] 
k= -2 

2 

X I Id k7,; ( - 1T12WJkm (T,mcuo ) 
m= -2 

(16) 

with the pulse cycle time-dependent spectral densities 

1 1 iT foo Jkm (T,mcuo ) = - - dto dr<F~m (t)F2m (t - r) > 
2 T 0 -00 

X exp{i[ mcuor + k {)_ r dt' CUI (t') ]}. 

(17) 

The imaginary part of the spectral density in Eq. (13) has 
been neglected. This part can be included in the unperturbed 
Zeeman Hamiltonian resulting in a very small second-order 
frequency shift.23,24 

The relaxation differential Eq. (16) is exactly similar to 
the corresponding Eq. (A4) in Ref. 5 derived for the contin­
uous spin-lock experiment, but with spectral densities 
Jkm (T,mcuo) vs Jkm (kcu l + mcuo ). The latter spectral den-
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sity function refers to the continuous spin-lock case and is 
defined by Eq. (A5) in Ref. 5. As mentioned before, the 
similarity can be traced back to the restriction to the terms 
involving k + k' = 0 in the original master relaxation Eq. 
( 11) and Eq. (A3) in Ref. 5 for the pulsed and continuous 
spin-lock experiment, respectively. It will be shown below 
that in the limit of zero-pulse spacing J km ( T,mwo ) will cor­
rectly reduce to J km (kw i + mwo )' The expansion of the 
density operator over the irreducible tensors in Eq. (16) 
yields a set of equations which can be integrated. However, 
to evaluate the relaxation rates (eigenvalues) it is necessary 
to derive certain properties of the spectral density function 
J km ( T,mwo ). Accordingly, in the next section this spectral 
density function will be evaluated as a function of the pulse 
cycle time and pulse width. 

SPECTRAL DENSITY FUNCTION Jkm(T,mroo) 

In the limit of zero-pulse spacing, WI becomes time inde­
pendent and the integral S~ _ T dt' WI (t') in Eq. (17) re­
duces to the simple quantity WI r with WI = 1T/2T. In this 
situation the integral over the time integration variable to 
can trivially be solved and the expression correctly reduces 
to 

J km (T,mwo ) = J km (kw i + mwo ) 

= - dr<F~m (t)F2m (t - r» I J'" 
2 -'" 

(18) 

Another relatively simple situation occurs when the index 
m:;6 O. Since the (pulsed) HI field strength is generally 
much smaller than the static field strength Ho, for m#O one 
has the condition 

mWo>k~ r~) dt' WI (t') with m#O. (19) 
T JIo - T 

In this situation the integral over WI (t') in Eq. (17) can be 
neglected with respect to mwo and, again, the integral over 
integration variable to can be dropped 

= - dr<F~m (t)F2m (t - r» 1 J'" 
2 -'" 

xexp{imwor}, m#O. (20) 

For m = 0, the spectral density function has to be fully eval­
uated as a function of the cycle time Tand the pulse width rp' 

The only important spectral density function to be eval­
uated is J20 ( T) [ = J _ 20 ( T) ]. In the present analysis, the 
spectral density J ± 10 (T) [m = 0, k = ± 1] is irrelevant 
due to the zero value of the reduced Wigner matrix elements 
[d (;)10 ( - 1T/2) = 0]. Furthermore, the spectral density 
Joo [m = 0, k = 0] is irrelevant due to the commutation 
properties of the subset TIO and T30 in the set of relaxation 
equations Eq. (16). In J20 (T) the correlation function is 
sign modulated due to the effect of the (1T /2) x pulse train. 
Accordingly, a pulse cycle time-dependent relaxation rate is 
observed if the cycle time is of the order of the characteristic 
correlation time of the fluctuating interaction. 

The spectral density function J20 (T) will be evaluated 
assuming an exponential correlation function of the quadru­
polar interaction 

(FTo (t)F20 (t - r» = A exp( - rlre ) 

with A = io(eq)2( 1+ 7]2/3). 

(21) 

In this equation re denotes the correlation time, and eq and 7] 
are the principal value and asymmetry parameter of the elec­
tric-field-gradient tensor, respectively. Inserting Eq. (21), 
together with Eqs. (4) and (5) to evaluate the integral over 
w\ (t ') in Eq. (17), the spectral density function takes the 
form 

1 iT i'" J20 (T) = A - dto Re dr exp( - sr) 
Too 

{
I -15 } X exp i1T ---:;x- [S(to) - S(to - r)] (22) 

with s = lire - i1T/T and Re denotes the real part of. The 
second integral on the right-hand side may be considered as 
a Laplace transform with a periodic argument and Laplace 
variable s. Using the properties of the Laplace transform of 
periodic functions,25 the upper limit of the second integral 
( 00 ) can be set to the period T according to 

1 
J20 (T) = A ------

1 - exp( - Ts) 

1 iT iT X - dto Re dr exp( - s1') 
Too 

{
I - 0 } Xexp i1T-2~ [S(to) -S(to -r)] . 

u (23) 

This equation can be integrated using the analytical expres­
sion of the periodic function S(t), i.e., Eqs. (5) and (6). 

After some tedious, but straightforward, algebra the final 
expression of the spectral density J20 (T) reads 

{ 
rp [ (1TrJrp)2 ]} J20 (T) = Arc I - -
T I+(1T1'Jrp)2 

- -- tanh - + ---=----''----=-A~{ (T) Sinh[(T-2rp)/21'e ]} 
T 2re cosh ( T /2re) 

X{I- 2 + 1-(1Trclrp )2 }. 
1+ (1TrJrp)2 [1 + (1Trc lrp )2]2 

(24) 

In the limit of o-function pulses, this expression can consid­
erably be simplified, 

J20 (T) = Arc [1 - 2~ tanhC~J], (25) 

and in the limit of zero-pulse spacing, one recovers the con­
tinuous spin-lock equation 

re 
J20 (T=rp )=A =J20 (2w\). (26) 

1 + (1TrJT)2 

If the correlation time re is much shorter than the cycle time 
T, the spectral density J20 (T) reduces to the value at zero 
frequency, /0 (0) = Arc· 
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The two limiting cases of the spectral density function 
J20 (n [Eqs. (25) and (26)] are compared in Fig. 2 as a 
function of the normalized frequency rclT. Both functions 
show a similar frequency behavior. Due to the pulsed irra­
diation J20 takes a somewhat smaller value and the corre­
sponding dispersion extends over a little larger frequency 
range. The relative ratio depends on rclT, but levels off at 
rJT>0.3. However, this ratio never exceeds 18%. For a 
similar spectral density, the ratio rJT should be ofthe same 
order of magnitude for both extreme cases. 

The spectral density function has been calculated as­
suming a single-exponential correlation function. However, 
in many experimental situations several independent pro­
cesses are involved in determining the loss of correlation of 
the quadrupolar interaction: 

(F!0(t)F20 (t-r» = IAiexp( -r/~), (27) 
i 

and according to Eq. (17) one obtains 

Jkm ( T,mUJo) = I J ~m ( T,mUJo ). 
i 

(28) 

The conditions for the validity of the perturbation treat­
ment are that changes in the density operator are small on 
the time scale ofthe lattice motions, (~) ~ « 1. 23 Further­
more, it is assumed that the characteristic relaxation times 
are much longer than the pulse cycle time. The latter as­
sumption implies the condition (~)rc T < 1. It should be 
noted that pulse cycle time-dependent relaxation rates are 
observed if the correlation time is of the order of the pulse 
cycle time. In this situation both conditions are equivalent. 

Several authors have derived Eq. (24) before, although 
in a different manner and context. Rhim, Burum, and Elle­
man 10 and Vega and Vaughan II derived a full expression for 
dipolar relaxation in solids using the Magnus expansion to 
describe the periodic irradiation. The expression reported by 
the former authors is valid for pulses of arbitrary angle and 
pulse width. Furthermore, they state that to minimize spin-

... : .. > ..... ; .... 
0.8 

.......................... --. 

0.1 

0.6 

0.4 

0.3 

0.2 \" . 
0.1 ....... " ..... 

FIG. 2. Comparison of the two limiting spectral density functions Eqs. (25) 
and (26). Solid line: 8-function pulses limit, Dashed line: continuous spin­
lock limit. Dotted-dashed line: relative ratio of the 8-function pulses and 
continuous spin-lock limits. 

heating 8 pulses with 8«rr12 should be used. However, for 
spin S = 3/2 quadrupolar relaxation care must be exercised. 
For pulse angles 8<,rr12 the restriction to the secular terms 
involving k + k' = 0 in Eq. (11) may no longer be a good 
approximation which will invalid the present analysis. Re­
cently, Vega, Poupko, and Luz reported a similar equation 
for spin S = 1 nuclei in a nonzero average quadrupolar inter­
action, modulated by exchange in a liquid-crystalline sol­
vent. 14 They made use of the average Hamiltonian formal­
ism and the results are in agreement with the complete 
line-shape analysis of the deuteron NMR spectrum. Fur­
thermore, they analyzed the effect of the finite pulse width 
[Eq. (24) vs Eq. (25)]. 

RELAXATION BEHAVIOR 

Now, using the relaxation differential Eq. (16) and the 
properties of the spectral density function Jkm (T,mUJo ), the 
evolution of the density operator Eq. (9) due to relaxation 
during the (rrI2)x pulse train may be calculated. As shown 
before, the time dependence of the stroboscopically sampled 
density operator is analogous to TIp relaxation, but with 
spectral densities Jkm ( T,mUJo ) vs Jkm (kUJI + mUJo ). Tak­
ing the relevant Eq. (10) in Ref. 5, one obtains the time 
evolution at times tn = nT (in the RTIF) 

0'** (tn) = 5112 [TIJI1e
t) (tn) + T3J11e

t) (tn) ] (29) 

with the relaxation functions 

/11et)(t,,) = H 4 exp(R ~qet)t/!) + exp(R ~qet)tn)], (30a) 

/~1et)(tn) =H -exp(R~qet)tn) +exp(Riqet)tn )], (30b) 

in which the superscript (qet) discerns relaxation during the 
quadrupolar echo train. The relaxation rates may be ob­
tained from Eqs. (16) and (17) in Ref. 5, but with spectral 
densities Jkm (T,mUJo ) vs Jkm (kUJ 1 + mUJo )' Using the pre­
viously discussed approximation Eq. (20), the relaxation 
rates are given by 

R ~qet) = - ( ei r UJ20 (n + JI (UJo ) + !J2 (2UJo ) ] , 

(31a) 

(3Ib) 

The R ~qet) component contains the pulse cycle time-depen­
dent spectral density J20 (1). 

It should be noted that the time evolution described by 
Eq. (29) refers to the RTIF interaction representation. 
However, the detection occurs in the rotating frame. Ac­
cordingly, the density operator has to be transformed back 
to the rotating frame. If the general form of the density oper­
ator in the R TIF is given by 

a** = I blm Tim, (32) 
I.m 

then in the rotating frame the density operator reads 

a*(tn) = L blmTlkDk~[0,rrI2, f'n dt' UJ I (I')]' (33) 
~'m ~ 

Backtransforming Eq. (29) to the rotating frame by using 
Eqs. (32) and (33) yields the result 
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u*(t,,) = u*(t",p = ± 1) + u*(tn'P = ± 3) (34) 

with 

u*(t",p = ± 1) = (i) II2[ (TI _ I - TI + I )/~~et)(tn)] 

- (V II2( T3 _ I - T3 + I )/i'tet) Un), 

(35a) 

(35b) 

which represent order p = ± 1 single- and p = ± 3 triple­
quantum coherences, respectively. 

Of course, in Ref. 5 exactly similar relaxation expres­
sions were reported, but for the continuous spin-lock case. 
Due to relaxation during the quadrupolar echo pulse train, 
triple-quantum coherences are generated. In the extreme 
narrowing limit, the rates R jqet) and R ~qet) have the same 
value and the relaxation becomes monoexponential. More­
over, in this situation the function/1~et) (tn) equals zero for 
all times and no triple-quantum coherences will be excited. 
The advantage of the pulsed experiment is that the signal can 
be sampled between the pulses. In this experimental arrange­
ment, the triple-quantum coherences are not observable. 
However, the triple-quantum coherences may be detected by 
a method analogous to the previously described TIp experi­
ment with coherence transfer ( TIp CT). S In this experiment, 
after the (11'/2)" pulse train an additional (11'12) coherence 
transfer pulse is applied to convert the T3 ± 3 coherences into 
T3 ± I coherences. The latter coherences evolve into observ­
able Tl ± I coherences due to transverse relaxation during 
detection after the pulse sequence. The separation of coher­
ence orders can be established by time proportional phase 
incrementation of the last (11'/2) coherence transfer pulse. 

If the signal is sampled at the echo positions at times 
tn = nT, only the Tl ± I coherences are observable. Accord­
ing to Eq. (35a), the observed signal is represented by 

sUn) =IWt) Un ). (36) 

The relaxation is biexponential [Eq. (30a)]. The relative 
ratio of the fast and slowly relaxing components is 0.8:0.2, 
respectively. The relaxation rate of the fast relaxing compo­
nent may be sensitive to the pulse spacing. The slowly relax­
ing component is determined by the spectral density at one 
and two times the Larmor frequency with respect to the stat­
ic field, and, hence, does not give information about slowly 
fluctuating processes. 

At the cost of spectrometer time, the triple-quantum 
coherences may be monitored by applying an additional co­
herence transfer pulse after the (11'/2)" pulse train. Now the 
total pulse sequence reads 

( 11'12 ) y - [T /2 - (11'/2)" - T /2] n 

- (1T/2)<p-rrl2 - t2 ,detection (37) 

in which the number of pulses n is incremented. The phase rp 
is defined as a positive angle with respect to the + y axis.s 

The separation of coherence orders can be established by 
time (Le., number of pulses) proportional phase incremen­
tation26

•
27 (TPPI) of the last pulse of the sequence: 

rp = nD..rp TPPI. It should be noted that detection occurs after 
the pulse train. The last coherence transfer (11'/2) 'I' - rrl2 

l)ulse converts the generated triple-quantum coherences, Eq. 

(35b), into T3 + I coherences. The latter coherences evolve 
into detectable-Tl ± I coherences due to transverse relaxa­
tion during the detection period. 

This experiment is exactly similar to the previous de­
scribed TIp CT experiment, but with a pulsed spin-lock field. 
The relevant expressions representing the signal contribu­
tions in the TIp CT experiment are given by Eqs. (36) and 
(37) in Ref. 5. Changing the superscript (p) into (qet) to 
discern relaxation during the quadrupolar echo train, one 
obtains 
sUn ,t2,p = ± 1) = [ifj'letl(tn )/\:'U2) + (6 1/2/32) 

X/i?et) (tn )fg) (tz ) ] exp( + irp), 
(38a) 

sUn,tz,P = ± 3) = - iz6I1Z/~?et)(tn )/\1)Uz )exp( + 3irp) , 

(38b) 
in which rp = nD..rp TPPI is the phase defined in Eq. (37). For 
the sake of completeness the relaxation functions during the 
detection period are given by7 

/\j>(tz) = H3 exp(R jlltZ ) + 2 exp(R il)tz )], 

/g)(t2) = (6 112/5) [exp(R jl't2) - exp(R ~1)t2)] 

(39a) 

(39b) 

(40a) 

(40b) 

The superscript (1) denotes transverse relaxation. The sig­
nals have to be detected as a function of the number of pulses 
n, and, hence, a true two-dimensional (2D) experiment with 
TPPI has to be performed. Since the signals corresponding 
to ± p coherences have equal amplitudes, a real Fourier 
cosine transformation results in a pure adsorption spectrum. 
It is clear that the direct sampling method takes much less 
spectrometer time. However, in case of a short pulse spacing, 
due to electronic limitations, the direct sampling method 
may not be feasible. In this situation the 2D experiment may 
be a useful alternative. 

EXPERIMENT 

Quadrupolar echo train experiments have been per­
formed on spin S = 3/2 23Na in a sodium poly- (methylacry­
late) ion-exchange resin. In a previous communication, the 
same resin has been investigated by a 2D TIp CT experi­
ment. 8 It was shown that the line shapes and relative intensi­
ties of the single- and triple-quantum signals are in agree­
ment with the theoretical expressions based on the density 
operator calculations. However, in the ion-exchange resin, 
the spectral density at two times the precession frequency 
with respect to the spin-lock field 2WI = 209.4 X 103 rad/s 
equals the value at zero frequency. The latter value has been 
obtained from transverse relaxation experiments. It was con­
cluded that the spectral density does not show a dispersion in 
the frequency range 0-30 kHz. Accordingly, any cycle time 
dependence of the relaxation rates is not observed. The pres­
ent system is still a suitable candidate to check the similarity 
of the TIp and quadrupolar echo train experiments. Further­
more, the validity of the relaxation rate expressions, Eqs. 
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( 31 a) and (31 b ), can be checked, since all relevant spectral 
densities are known. 

The poly-(methylacrylate) ion-exchange resin, cross 
linked with 4.5% divinylbenzene (Zerolit 226) was obtained 
from BDH Chemicals Ltd, Poole, United Kingdom. The 
resin is completely neutralized with alkali (Merck) and im­
mersed in water. The sodium capacity is 5 X 10 - 3 mole per 
gram resin, whereas the sodium content in the surrounding 
water medium is negligible. The experiments were per­
formed on a Bruker MSL-400 spectrometer, at a static field 
strength of 9.4 T. To achieve a homogeneous HI field, a 
high-power probe (Bruker Z-34-v-HP) equipped with a so­
lenoid was used. The temperature was controlled at 298 K 
using a gas thermostat. A series of experiments with differ­
ent cycle times and two different HI field strength levels has 
been performed. The signal was sampled between the pulses. 
Furthermore, an experiment with an additional coherence 
transfer pulse after the (1T /2) x pulse train (for ease of refer­
ence referred to as QET-CT) has been carried out. This ex­
periment is similar to the previously reported TIp CT experi­
ment, but with a pulsed spin-lock field. For more 
experimental details concerning the 2D data analysis and 
separation of coherence orders the reader is referred to Ref. 
8. 

First, the results obtained with the direct sampling 
method will be presented. A typical quadrupolar echo train 
decay curve is displayed in Fig. 3. Note the logarithmic in­
tensity scale. The solid line represents a fit of the data to a 
sum of two exponentials, in which the rates as well as the 
amplitude fractions were optimized. Parameters resulting 
from this fit are collected in Table 1. Results obtained from 
experiments with different settings of the cycle time T and 
the pulse width 'Tp are also presented in Table 1. From Fig. 3 
it is clear that a sum of two exponentials describes the data 
well. According to Eqs. (30a) and (36), the theoretical am­
plitude fractions of the fast and slowly relaxing components 

nT.ms 

FIG. 3. Logarithm of the (rr/2) x pulse train decay curve vs the sampling 
time t. = nT. 175 echoes were sampled with a cycle time T= 1I0x 10 -. s 
and pulse width 'rp = 10 X 10 - 6 s. The solid line results from a nonlinear 
least-squares fit of the data to a sum of two exponentials. Fitted parameters 
are collected in Table I. Please note the pronounced biexponentiality. 

TABLE I. Results of the quadrupolar echo train experiment in which the 
magnetization was sampled between the pulses. Relaxation rates and ampli­
tude fractions of the fast and slow relaxing components result from the fit of 
the experimental decay curves to a sum of two exponentials. The cycle time 
T, the pulse width 'rp ' and the duty cycle parameter {j = 'rp/T are included 
too. (The estimated experimental reproducibility in R jq,,) and R ~q,,) is 5% 
and 10%, respectively.) 

T 'rp 
R tqet) 

- 3 
_ R~q,t) 

(l0-6 s) (10-6 S ) {j (s - ') Fraction (s - ') Fraction 

60 10 0.17 1290 0.80 168 0.20 
110 10 0.09 1270 0.79 179 0.21 
210 10 0.05 1260 0.79 190 0.21 

65 15 0.23 1340 0.77 199 0.23 
1I5 15 0.13 1300 0.78 193 0.22 
215 15 0.07 1260 0.79 190 0.21 

areO.8 and 0.2, respectively. The fitted amplitude ratios (Ta­
ble I) are in close agreement, irrespective of the values of the 
cycle time Tor pulse width 'Tp' 

The experimental reproducibility of the rates R 1qet
) and 

R ~qet) is 5% and 10%, respectively. The reproducibility of 
the rate R iqet) is somewhat poor, due to the relatively small 
corresponding amplitude fraction (0.2 vs 0.8). Within ex­
perimental accuracy, the rates obtained with the different 
experimental settings are all equal. There is no cycle time 
and/or pulse-width dependence. In the present duty cycle 
range 0 < 8 < 0.23, the effect of the finite pulse duration on 
the spectral density function J20 ( T) does not exceed the esti­
mated experimental error margin 5%, irrespective of the 
correlation time [Eq. (24) or Ref. 14]. Accordingly, a possi­
ble pulse-width dependence of the rate R ~qet) is beyond de­
tection. The absence of any cycle time dependence and the 
estimated values of the relaxation rates will be interpreted 
below. First, the results of the quadrupolar echo train with 
coherence transfer will be discussed. 

Figure 4 displays the 23Na multiple-quantum spectrum 
obtained using pulse sequence Eq. (37) with TPPI of the last 
coherence transfer pulse. The spectrum results from a real 
cosine transformation with respect to tn = nT (FI dimen­
sion) after Fourier transformation with respect to the detec­
tion time t2 (F2 dimension). The section along the FI di­
mension at the exact resonance position in F2 is displayed. 
The experimental parameters are T = 60 X 10 - 6 s, 
'T = 10 X 10 - 6 s, and AqJ = 1T/4. Using this phase incre­
~ent, the corresponding frequency shift between succeeding 
coherence orders equals AqJ /21TT = 2.083 kHz. According­
ly, the feature at 2.083 kHz is the single-quantum signal, 
whereas the signal at three times this frequency represents 
the triple-quantum contribution. It is clear that, just as in 
case of continuous spin-locking, due to relaxation during the 
( 1T/2) x pulse train triple-quantum coherences are genera­
ted. 

The single- and the triple-quantum signal contributions 
are both fitted to a sum of two Lorentzians. Using a nonlin­
ear least-squares procedure, the linewidths as well as the 
relative amplitude fractions (i.e., areas) were optimized. Re­
sults are collected in Table II, together with the previously 
reported results obtained with a TIp CT experiment. There is 
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FIG. 4. l.lNa multiple-quantum spectrum resulting from the QET-CT ex­
periment [pulse sequence Eq. (37) J. The section along the FI dimension 
(Fourier transform with respect to t n = n T) at the resonance position in F2 
is displayed. The feature on the right-hand side represents the triple-quan­
tum coherence. Experimental parameters: T = 60 X 10 - 6 s, 
Tp = lOX 10 - 6 s, and the time-proportional phase increment 
6.tp TI'I'I = 1T/4. The solid line represents a nonlinear least-squares fit of a 
sum of two Lorentzians to both signal contributions. Parameters resulting 
from the fit are collected in Table II. 

close agreement between the results obtained with the con­
tinuous and pulsed spin-lock experiments, respectively. 

According to Eqs. (30b) and (38b) the triple-quantum 
signal broad and narrow components have equal ampli­
tudes, but opposite signs. The experimental values (Table 
II) are in reasonable agreement. For the single-quantum sig­
nal contribution this amplitude ratio is somewhat more in­
volved [Eq. (38a)] and depends on the transverse relaxa­
tion during the detection period t2 (characterized by rates 
R \ I) and R i 1». For a discussion of the single-quantum sig­
nal broad- and narrow-component amplitude ratio the read­
er is referred to Ref. 8. Finally, if the triple-quantum contri­
bution is divided by a factor of 5 and added to the 
single-quantum signal, the resulting line shape consists of 
two components with relative intensity ratio 0.8:0.2 [Eqs. 
(30a), (38a), and (38b)]. Fit parameters resulting from 

this combination are also collected in Table II and, again, the 
fitted amplitude fractions are in reasonable agreement. 

It should be noted that the coherence transfer experi­
ments are much more time consuming compared to the di­
rect sampling method. Accordingly, in the QET-CT experi­
ment the reproducibility is somewhat worse (10%), due to 
fact that less scans were accumulated (typically 16 vs 64) . 
Averaged values of the relaxation rates are collected in Table 
III. Within statistical spread, no difference in relaxation 
rates originating from the different experimental methods 
can be detected. 

Now, the relaxation rates will be interpreted in terms of 
the dynamic processes involved. According to Eq. (31 b) 
and Eq. ( 17) in Ref. 5, the rates R ~qet) and R t) are sensitive 
to the spectral densities at one and two times the Larmor 
frequency with respect to the static field Ho. These relaxa­
tion rates should be equal to the rate R i I) extracted from tfie 
slowly relaxing component of the transverse relaxation 
curve. The latter rate has the value R i 1) = - 197 s - 1, 

which is in reasonable agreement with the values of R iqet
) 

and Rip). 
As was discussed before, in the ion-exchange resin, the 

spectral density function does not show a dispersion in the 
region 0-30 kHz. Accordingly, the characteristic correla­
tion times describing the fluctuating quadrupolar interac­
tion are at least one order of magnitude smaller than the 
value, say, 30 X 10 - 6 s. With the present experimental pulse 
timing, the characteristic correlation times r:, are much 
smaller compared to the cycle times T (Table I). According 
to Eq. (24), in the limit ~ ~ T the spectral density function 
J20 (n equals the value at zero frequency Jo (0). Further­
more, in this limit no cycle time and/or pulse-width depen­
dence can be observed. This is in accordance with the experi­
mental results, even in the limit of continuous spin-locking 
(8-.1). If J20 (T) = Jo (0), the rate R ~qet) can be calculated 
using the estimated spectral densities at zero, one, and two 
times the Larmor frequency CUo. The products of the latter 
spectral density functions and the coupling constant have 
been estimated from extensive field-dependent longitudinal 
and transverse relaxation experiments.28 Inserting the val­
ues(eQHl)2Jo (0) = 1530s- 1

, (eQ/fz)2J1 (cuo ) = 116s- 1
, 

TABLE II. Results of the 20 quadrupolar echo pulse train with an additional coherence transfer pulse, Eq. 
(37) (QET-CT). For comparison, the results of the previously reported TlpCT experiment on the same resin 
have been included too. Relaxation rates and amplitude fractions of the broad and narrow components result 
from the fit of the line shapes toa sum of two Lorentzians. In the QET-CT experiment, T= 60X 10 - 6 s, pulse 
width Tp = lOX 10 -. s, and the duty cycle parameter 8 = Tp/T = 0.17. The TlpCT experiment is performed 
with a somewhat lower HI field-strength level: <iiI = 104.7 X 103 rad/s. [The superscript (*) denotes (qet) and 
(p) for the QET-CT and the T,pCT experiment, respectively.] 

- Rj*) -R~*) 

Signal (s - I) Fraction (S-I) Fraction 

QET-CT s( p = ± 1) 1240 0.83 171 0.17 
s(p= ± 3) 1350 -0.96 188 1.04 
s(p = ± 1) + !s( p = ± 3) 1230 0.78 174 0.22 

TiP CT" s( p = ± I) 1230 0.86 181 0.14 
s(p= ± 3) 1310 -0.98 185 1.02 
s(p = ± I) + !s( p = ± 3) 1220 0.81 182 0.19 

• Results taken from Ref. 8. The experimental reproducibility in the relaxation rates is \0%. 

J. Chern. Phys., Vol. 94, No.7, 1 April 1991 Downloaded 23 May 2010 to 137.132.123.69. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



4774 J. R. C. van der Maarel: Relaxation of spin quantum number 5=3/2 

TABLE III. Compilation of relaxation rates obtained by the different ex­
perimental methods. 

1290 ± 30 
1300 ± 80 
1270± 60 

185 ± \0 
180 ± \0 
183 ± 3 

• Averaged rates obtained by the QET experiments with different experi­
mental cycle times and pulse widths. 

bRates originating from the QET-CT experiment after averaging the 
s(p = ± 1) and s(p = ± 3) signal contributions. 

C The corresponding values from the T,p CT experiment. 

and (eQ /fl)2J2 (2lUo) = 81 s -I into Eq. (31a), one obtains 
R lqet) = - 1280 s - I. The latter value agrees closely with 
those obtained from the TIP and quadrupolar echo train ex­
periments. 

CONCLUSIONS 

For spin S = 3/2 the time evolution of the density oper­
ator under the (17'/2) x pulse train has been analyzed as a 
function of the pulse cycle time and pulse width. It has been 
shown that outside the extreme narrowing limit the relaxa­
tion is biexponential. The amplitude ratio of the fast and 
slowly relaxing component equals 0.8:0.2. The rate of the 
fast relaxing component gives access to a spectral density 
function which is cycle time dependent in the presence of 
slowly fluctuating processes. Furthermore, due to relaxation 
under the effect of the quadrupolar echo train triple-quan­
tum coherences may be excited. The latter coherences can be 
monitored using a 2D experiment with an additional coher­
ence transfer pulse after the (17'/2) x pulse train. The various 
theoretical expressions have been checked in an experimen­
tal study of sodium in an ion-exchange resin. Although the 
present system does not show any cycle time-dependent re­
laxation rates, for spin S = 3/2 the similarity of the TIp and 
the quadrupolar echo train experiment has been confirmed. 
The spectral density function does not show a dispersion in 
the relevant frequency range 0-30 kHz. Accordingly, the 
extracted relaxation rates agree with the spectral densities 
obtained from conventional longitudinal and transverse re­
laxation experiments. 

The present formalism allows straightforward incorpo­
ration of additional relaxation mechanisms by extending the 
fluctuating Hamiltonian Eq. (2) accordingly. The spectral 
density function has been calculated assuming an exponen­
tial correlation function. Other models of the electric-field­
gradient temporal behavior can be taken into account by 
inserting the relevant correlation function into Eq. (17). 

As mentioned before, the relaxation under the quadru­
polar echo train pulse sequence is very similar to TIp relaxa­
tion. However, there are some important differences. Al­
though most of the differences are well known, the main 
advantages of the quadrupolar echo train experiment will be 
summarized. 

(i) Very fast data acquisition due to the fact that the 
complete relaxation curve is recorded in one scan. 

(ii) Well-defined ratio of the fast and slowly relaxing 

component (0.8:0.2). In the continuous spin-lock experi­
ment using direct detection the corresponding ratio is some­
what complicated, due to the presence of an interference 
term [Eq. (31) in Ref. 5]. 

(iii) The cycle time can easily be varied. The limiting 
factor is the electronic dead time of the spectrometer receiv­
er. In the spin-lock experiment, the corresponding experi­
mental parameter is the HI field-strength level. Although, 
this level can be varied by adopting the transmitter power, a 
simultaneous power level and phase switch between the 
preparation pulse and the spin-lock field is electronically dif­
ficult to achieve. Of course, the continuous spin-lock experi­
ment has its merits too. 

(iv) For a similar spectral density J20 , in the pulsed and 
continuous spin-lock experiment the frequency liT should 
be of the same order of magnitude (Fig. 2). In this case the 
power ratio equals P(QET)/P( TIP);:::: T Irp. It is clear that 
the pulsed experiment takes more power especially in the 
limit of a small pulse duration. 

(v) To study relatively more rapidly fluctuating qua­
drupolar interactions, one needs very short cycle times and, 
accordingly, the continuous spin-lock experiment with a 
high HI field is still the best experimental approach. 

(vi) The spin-lock experiment is sensitive to the value of 
the spectral density at frequency 2lU\, irrespective of the ac­
tual shape of the correlation function. 
The chosen experimental approach will clearly depend on 
the kind of system to be investigated and the electronic per­
formance of the spectrometer. 
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APPENDIX 

In this appendix it will be shown that in the relaxation 
master equation the terms involving odd values of k + k 1 

vanish. With the restriction to the secular terms with 
m = - m ' but without the condition k + k 1 = 0, and neg­
lecting the imaginary part of the spectral density function, 
the relaxation master Eq. (11) reads 

du** = _C 2 ± exp[iCk+kl) ('dtllU\(t')] 
dt k,k' = - 2 Jo 

2 

X [T [T t .no**]] "d k(2m)(-17'/2) 2k , 2 - k • ,v L.. 
m= -2 

xd <!.)k·m ( - 17'/2)- dT(Frm (t)F2m (t - T» 1 fCC 
2 - cc 

xexpH mlUoT - k 1 f~ T dt 1 lUI (t ') ]}. (Al) 

According to Eqs. (14), (19), and (20), for m ¥= 0 the spec­
tral density function has the symmetry property 
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(A2) 

The reduced Wigner matrix elements obey the symmetry 
relation22 

(A3) 

Together with Eqs. (A2) and (A3), the relaxation master 
Eq. (AI) can be expressed as 

d~* = _C
2 
k',kt-2 eXP[i(k+k') l'dt'lV 1 (t')][T2k ,[TLk"U**]] 

X L [1 + (-I)k+k'(1-8mo)]d~~( -11'/2)d<:')k'm( -11'/2) 
m =0,1,2 

with 8mO the Kronecker delta function. The terms with 
m i= 0 and odd values of k + k' are seen to vanish. With 
m = 0 the terms involving odd values of k + k ' vanish due to 
the factthat d k2J ( - 11'/2) equals zero for odd k [Eq. (A3)]. 
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