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The dynamics of spin 1=1 nuclei in a radio-frequency (rf) field and with both a static and 
fluctuating quadrupolar interaction are discussed. Approximate expressions of the relaxation 
rates are derived under the assumption that the linewidths are much smaller than the 
characteristic line-splittings. The conventional spin-lock relaxation rate increases with 
increasing ratio of the spin-lock field strength and static quadrupolar coupling CUI/CUQ and is 
sensitive to the spectral density at frequency ~cu~+4cuf. The rate shows a maximum in the 
presence of low frequency molecular motion. Some experiments are performed on a deuterium 
spin probe in a low molecular weight liquid crystal. The creation of multipolar states by con­
tinuous rf irradiation is demonstrated. 

INTRODUCTION 

The measurement of the magnetic relaxation rates of 
spin 1= 1 nuclei, e.g., 2H and 14N, is an important method 
to investigate the molecular reorientation dynamics in con­
densed matter. For these chemically bound nuclei, the 
dominant relaxation mechanism is the intramolecular qua­
drupolar interaction. In macroscopically oriented systems, 
such as liquid crystals, there might be a residual static 
quadrupolar coupling. The latter coupling causes the char­
acteristic line-splitting of the spin 1= 1 resonance. 

The Fourier components (spectral density) of the cor­
relation function of the fluctuating quadrupolar interaction 
tensor can be studied using (selective) inversion recovery 
and/or Jeener-Broekaert pulse sequences. 1,2 Transverse re­
laxation rates are sensitive to the value of the spectral den­
sity at zero frequency, and, hence, to low frequency mo­
lecular motion. However, the measurement of transverse 
relaxation rates may be complicated due to additional 
dephasing contributions. These contributions include 
translation diffusion and a possible inhomogeneity in static 
quadrupolar coupling. These effects can be removed by 
spin-locking the magnetization in the rotating frame using 
a radio-frequency (rf) field. 

In the absence of a static quadrupolar coupling, the 
theoretical framework to study nuclear magnetic resonance 
(NMR) relaxation of quadrupolar spin 1 and 3/2 under 
(pulsed) spin-locking have been provided by Blicharski3 

and the present author,4,5 respectively. The spin-lock relax­
ation rate is sensitive to the spectral density at two times 
the Larmor frequency with respect to the spin-lock field 
2yBI , with BI the spin-lock field strength. The latter fre­
quency is typically of the order kHz. The low frequency 
behavior of the spectral density can be probed by adopting 
the transmitter power level. The dynamics of spin 1= 1 
nuclei in a rf field and with a static quadrupolar coupling, 
but under the neglect of relaxation, have been evaluated by 
Bowden, Hutchinson, and Separovic6 and Vega and Pines.7 

In the present contribution, the time-evolution of the den­
sity operator in the presence of a rf field and both a static 

and fluctuating quadrupolar interaction will be discussed. 
Following Bowden et ai.,6 the density operator is ex­

pressed in an irreducible tensor operator basis. The master 
equation decomposes into two sets of coupled differential 
equations. One set is relevant for Tip experiments, in 
which the magnetization is spin-locked along the rf field in 
the rotating frame. The second set describes T 2p relaxation 
of magnetization perpendicular to the rf field. Approxi­
mate solutions are derived under the assumption that the 
linewidths are much smaller than the characteristic line­
splittings. Some experiments are performed on a deuterium 
spin probe in a low molecular weight liquid crystal. 

DIFFERENTIAL EQUATIONS 

In this contribution the spin density operator as well as 
the Hamiltonian are expressed in terms of irreducible ten­
sor operators.8 The relevant spin operators for 1= 1 are 
summarized in Table I. The unit tensor operators, indi­
cated with the cap hat, fulfill the normalization 

At A • At m A 
Tr{TlmTI'm'} = fJll'fJmm, With Tim = ( - 1) T I_m. Sym-
metric and antisymmetric combinations are defined ac­
cording to 

Tlp(s) = 1/ ~2( T I_p+ Tip), 
(1) 

Tlp(a) = 1/ ~2(TI_p- Tip), 

respectively. For unit tensor operators these combinations 
are analogously defined. The commutation relations are 
conveniently tabulated in Ref. 9. 

The spin system evolves under the simultaneous action 
of the Zeeman, static quadrupolar, spin-lock, and fluctuat­
ing quadrupolar Hamiltonian. All calculations reported 
here refer to the Larmor frequency rotating frame (indi­
cated by the asterisk). In this representation, the Zeeman 
Hamiltonian Hz=cuoT IO vanishes. The static quadrupolar 
Hamiltonian commutes with the Zeeman Hamiltonian and 
is given by 

~s=HQs=cucl3[3I;-I(I + 1)] = ~(2/3)cuQT20' 
(2) 
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TABLE I. Relevant irreducible tensor operators for spin I = I (Ref. 8). a 

TIO=Iz 
T 1±1='l'1/,'2I", 

T 20 = 1/ ~6[3I;-I(l + I)] 
T2±1= T 1/2{I.I '" +1 ±Iz} 

T2±2= 1/2I~ 

aFor spin 1= 1 the unit tensor operators are defined according to T2m 
= T 2m• T1m = 1/v'1T1m· 

where wQ denotes the static quadrupolar coupling param­
eter. The spin-lock field is applied exactly on resonance 
along the x axis with field strength WI = - r B I • In the 
Larmor frequency rotating frame the spin-lock Hamil­
tonian becomes time-independent and reads 

(3) 

The zero average fluctuating quadrupolar interaction 
Hamiltonian becomes 

2 

~F(t) =C L (-l)mT2m exp(imwot) 
m=-2 

(4) 

with C= ~(3/2)eQ/li. The electric field gradient tensor 
components (in the laboratory frame defined) are given by 

F 20 = l/2Vzz , 

F2± I = =F 1/ ~6( V xz±iVyz), (5) 

F2±2= l/(2J6) (V xx- Vyy ±2iVxy ) 

and (F2m ) denotes the average value. 
The static quadrupolar as well as the spin-lock Hamil­

tonian are time-independent (Le., in the Larmor frequency 
rotating frame). The fluctuating quadrupolar interaction 
induces relaxation. The time-evolution of the density oper­
ator under a static Hamiltonian m and a fluctuating part 
~F(t) is given by the master equation lO 

da* 
dt=-i[m,a*]+f(a*) (6) 

with 

m=Ht+~s 
and the relaxation term 

f(a*)=- fo"" ([~F(t),[exp(-imr) 

(7) 

X~F(t-r)exPUmr),a*(t)]] )dr. (8) 

The validity of this equation has been discussed by 
Abragam. lO Please note the presence of m in the relax­
ation contribution. 

The evolution due to the first term in Eq. (6) 
(i.e., under neglect of relaxation) can be solved in 
analytical form. 6

,7 The formal solution reads a*(t) 
= exp( - imt)a*(O) expUmt). However, relaxation 
effects are most easily taken into account by using the 
differential form. With the Hamiltonians Eqs. (2) and (3), 
this first term becomes 

(9) 

Now, the density operator is expanded in an irreducible 
tensor operator basis. Differential equations are derived 
which couple the Tim. These equations can be decoupled 
and subsequently integrated. 

A T~e density A operato~ a* is express~d in the ~perator set 
T2o , T l1 (a), T 21 (s), T22 (s), T lO , T l1 (s), T 21 (a), and 
T22 (a). In principle, all these components are experimen­
tally accessible using Tip and T 2p experiments, possibly 
supplemented with phase cycling and/or coherence trans­
fer. Some examples will be discussed below. The longitu­
dinal magnetization is proportional to TIO . The spin­
locked magnetization along BI (Le., the x-axis) is 
proportional to T 11 (a), whereas the component along the 
y-axis perpendicular to the rf field is proportional to 
T 11 (s). There are two additional single-quantum coher­
ences T21 (s) and T21 (a). The double-quantum coherences 
are given by T22 (S) and T22 (a). Finally, T20 denotes the 
quadrupolar spin polarization. 

With the commutation relations,9 Eq. (9) reduces to 
two sets of coupled differential equations. For the first set, 
one obtains 

o - J3iwi 

o iWQ 

iWQ 0 

o -iwi 

( 10) 

and for the second set 

o 

(11 ) 

The first set contains the component Til (a) and is relevant 
f~r Tip experiments. The second set contains TIO and 
TlI (5). These components are perpendicular to the rf field 
and are relevant for T 2p experiments. 

The matrices in Eqs. (10) and (11) can be diagonal­
ized and subsequently integrated in analytical form. For 
the matrix in Eq. (10), the eigenvalues and corresponding 
eigenoperators are, respectively, 
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TABLE II. Time-dependence of the irreducible tensor operators due to m. 
u 

J3wlwQ!:l-cos(k1t)]/ktTII (a) +{w~+wr[l +3 cos(k1t)]}!ktT20 
-iJ3wl sin(k1t)lkIT 21 (s) + J3wHcos(k1t) -1]/ktT22 (s) 

[w~ cos(k1t) +4wr]lktTII (a) + J3wlwQ!:l-cos(k1t)]1 

ktT20+iwQ sin(k1t)lkl 1'21 (s) +wlwQ!:l-cos(k1t)]lktT22(S) 

iWQ sin(k1t)lkl I'll (a) -iJ3wl sin(k1t)lkl 1'20 

+cos(k1t) 1'21 (s) -iwi sin(k1t)lkl T 22(s) 

wlwQ!:l-cos(k1t)]lktTII (a) + J3wr[cos(k1t) -l]/ktT2o 
-iwi sin(k1t)lkl 1'21 (s) + (1- {wr[l-cos(k1t)]}/kt) T 22(s) 

[k2 cos(k3t) -k3 cos(k2t)]IkITIO+iCtlI[sin(k3t) -sin(k2t)]lkIT II (s) 

+wl[cos(k3t) -cos(k2t)]lkl 1'21 (a) +I1k2 sin(k3t) -k3 sin(k2t)]Ikl T 22 (a) 

iWI [sin (k3t) -sin (k2t)]lkl 1'10+ [k2 cos(k2t) -k3 cos(k3t)]lkl I'll (s) 

+llk2 sin(k2t) - k3 sin (k3t)]lkl 1'21 (a) +wl[cos(k3t) -cos(k2t)]Ikl T 22(a) 

wl[cos(k3t) -COS(k2t)]Ikl T IO+llk2 sin(k2t) -k3 sin(k3t)]lkITII (s) 

+ [k2 cos(k2t) -k3 cos(k3t)]lkl 1'21 (a) +iCtlI[sin(k3t) -sin(k2t)]lkl T 22 (a) 

11k2 sin(k3t) -k3 sin(~t)]Ikl 1'10 + wl[cos(k3t) -cos(k2t)]lkl I'll (s) 

+ iCtlI [sin (k3t) -sin(k2t)]lkIT 21 (a) +[k2 COS(k3t) -k3 cos(k2t)]lkIT22 (a) 

0, AI=T20-J3T22(S) 

0, A2=wITl1(a)+wQTds), (12) 

±ikJ, A±3= J3WIT20-wQTl1 (a) ~k1T21 (s) 

+w IT22 (S), 

and for Eq. (11), one obtains 

±ik2, B±I =wITlO~k2Tl1 (s) -k2T21 (a) 

±wI T22(a) 

±ik3, B±2=WITlO~k3Tl1(S)-k3T21(a) 

±wITda) 

(13 ) 

with kl = J(w~+4wi), k2= (wQ+kl )/2, and k3= (wQ 
-kl)/2. Please note that due to the fact that AI and A2 
have the same eigenvalue, any linear combination of these 
operators represents an eigenoperator. The resulting evo­
lution of the tensor operators under the action of the static 
Hamiltonian is summarized in Table II. In the limit wQ ..... O, 
these results represent a tensor rotation about the x-axis, 
which is related to symmetric and antisymmetric combi­
nations of the Wigner rotation matrix elements. 

The results in Table II agree with the results reported 
by Bowden, Hutchinson, and Separovic6 using a similar 
operator basis and Vega and Pines 7 using the fictitious spin 
1/2 formalism. In the present formalism, relaxation effects 
can easily be incorporated due to the fact that the differ­
ential form has been used. For this purpose, Eqs. (10) and 
( 11) have to be supplemented with the relaxation contri­
bution Eq. (8). Now, the differential equations which cou­
ple the Tim cannot be solved in analytical form. However, 

approximate solutions can be derived under the assump­
tion that the linewidths are much smaller than the charac­
teristic frequencies k i • 

With the fluctuating Hamiltonian Eq. (4) and neglect 
of (nonsecular) terms oscillating with a multiple of the 
Larmor frequency, Eq. (8) reads 

2 

1(0*) = _C2 m~_21)O [T2m ,[exp( -imT) Tim 

Xexp(imT),o*(t)] ] 

X ([F!m(t) - (Ffm)] [F2m(t-T) - (F2m )]) 

X exp (imwoT)dT. (14) 

The double commutator can be calculated using the results 
in Table II. The relaxation term reduces to combinations of 
the spectral density function at a number of frequencies. 
The real part of the spectral density function is defined 
according to 

Jm(w)=C21/2 S:oo ([Ffm(t)-(F!m)] 

X [F2m(t-T) - (F2m ) ])exp(iwT)dT. (15) 

The imaginary part induces a very small second order fre­
quency shift and is neglected. 10 

The relaxation contribution includes terms propor­
tional to Jm(mwO±ki), where the shift ±ki is due to the 
presence of m. The Larmor frequency is generally much 
larger than anyone of the frequencies ki • For m=r!=O, the 
difference between Jm(mwo±ki) and Jm(mwO) is immate­
rial, and, hence, m in Eq. (14) can be neglected. The term 
with m = a reduces to combinations of the spectral density 
at frequencies kl and zero. These spectral densities are 
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TABLE III. The spin operator double commutator for m=O. 

0* 

TlO 

TII (a) 
T21 (s) 
T22 (s) 

TII(s) 
T21 (a) 
T22 (a) 

3/~J3£tlI£tlJcos(klr) -l]/!qTII (a) +3/2~3i£tl1 sin(klr)/ 
k I T 21 (s) 

2 2 ,,> A 

3/2[£tl¥+4a>1 cos(kl"T)j/"1TII (a) 
312[£tlQ+4a>f cos(kl"T)]I!qT21 (s) 
3/~£tlI£tlJcos(klr) -1]I!qTII (a) +3/2i£tl1 sin(klr)/ 
k I T 21 (s) 

3/~£tlIWdcos(kl"T) -lj/!qT21 (a) +3/2iwl sin(kl"T)1 
kl Til (s) 
3/2{w¥+2wf[1 +cos(klr)]}!!qtll (s) 
3/2{wQ+2wr[1 +cos(kl"T)!}/!qT21 (a) 
3/~wlwJcos(kl"T) -I]l!qTII (s) + 3/2iwl sin(kl"T)1 
k I T 21 (a) 

sensitive to slow motion and are the main object of 
this study. Accordingly, for m=O I(a*) has to be fuIIy 
evaluated. 

The spin operator double commutator 
[T20 ,[exp( - il1Jr) T 20 expUl1Jr),a*]] (i.e., for m=O) is 
evaluated using the results of Table II. For the different 
basis operators, this double commutator is set out in Table 
III. With these results, together with Eqs. 
(10),(11),(14),(15), and the neglect of 11J in the m= ± 1 
and ±2 contributions, Eq. (6) reduces to the coupled dif­
ferential equations 

( tw )( -a, 
~3{3 - ~3iwl 

-q d T11 (a) 0 -a2 iWQ 

dt 1.:"21 (s) = - ~3iwl iWQ -a3 
T 22 (s) 0 {3 -iWl -a4 

( tw ) ~ll (a) 
(16) X T 2l (s) , 

T22 (s) 

( too ) (-Y' 
-iWl {3 

-LJ 
!!... f11(s) = -iWI -Y2 iWQ 

dt T 21 (a) 0 iWQ -Y3 
T22 (a) 0 {3 -iWl -Y4 

( too ) fll (s) 
(17) X T 2l (a) , 

T22 (a) 

where 

a2=3/2[w~o(0) +4wiJo(k 1)]lki + 512J! (wo) 

+J2( 2wO), 

a3=3/2[w~o(0) +4wiJo(k l ) ]lki + l/2Jl (wo) 

+J2(2wO)' 

a4=Jl (wo) + 2Jz( 2wo)' 

y!=Jl(wo)+4J2(2wO), (18) 

Y2=3/2{w~o(0) +2wi[Jo(0) +JO(kl ) ]}Iki 

+ 512J! (wo) +J2(2wO), 

Y3=3/2{w~o(0) +2wi[Jo(0) +JO(kl ) ]}/ki 

+ l/2Jl (wo) +J2(2wO)' 

Y4=Jl (wo) + 2J2 ( 2wo), 

{3=3/2wlwQ[Jo(0) -Jo(kl ) ]lki· 

Apart from the conventional spectral densities Jo(O), 
J I (wo), and J2(2wO) the relaxation matrix contains the 
spectral density at frequency kl:Jo(kl ). 

The final differential equations governing the time­
dependence of the basis operators under the action of the 
static Hamiltonian and relaxation effects are given by Eqs. 
(16) and (17). When relaxation effects are included, the 
master equation can only be integrated in analytical form 
in the two limiting cases W! =0 and/or wQ=O. 

In the absence of a spin-lock field (WI = 0, kl = wQ) the 
relaxation contribution becomes diagonal ({3 = 0). The re­
laxation rates agree with the results of Jacobsen, Bilds0e, 
and Schaumburg. I I The wQ dependence in the rates Eq. 
(18) vanishes. This is due to the fact that the static qua­
drupolar Hamiltonian Eq. (2) commutes with T 20 in the 
spin operator double commutator. The difference in relax­
ation behavior of the symmetric and antisymmetric tensor 
combinations vanishes as well. This is related to the invari­
ance of the spin system under a rotation about the z-axis. 
The differential equations can be solved in analytical form 
and have been reviewed by VoId. I 

In the absence of a static quadrupolar intera~tion (wQ 
= 0, k I = 2w I) the spin -locked magnetization [T 11 (a)] is 
decoupled from any other Tim' and, hence, relaxes accord­
ing to a single exponentiae 

1'11 (a) .... exp{ - [3/2Jo(2wl) + 512Jl (wo) 

(19) 

The components perpendicular to the rf field axis, i.e., 1'\0 
and 1'11 (s), are coupled. The relaxation behavior (referred 
to as T zp) can be solved in analytical form. For a suffi­
ciently intense rf field they relax with the averaged rate 
(YI+Yz)/2 and oscillate with frequency wl/21T. However, 
these signals have little practical value due to line­
broadening effects caused by Bl field inhomogeneity. The 
other operators are not accessible. 
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FIG. 1. Simulated spectra resulting from the Fourier transform of the 
numericall~ solved tilpe-evolution Eq. (16). The density operator is pre­
pared in a Til (a) stafe by an initial (1T/2)y pulse (TIp experiments). The 
detected coherences are indicated in the figure. The spectral densities are 
calculated using an exponential correlation function with a correlation 
time 1"c=O.1 ms and a coupling constant e'lqQlh= 1 kHz (see text). The 
other parameters are Wc!21T=WI121T= 1 kHz. 

In the simultaneous presence of a spin-lock field and a 
static quadrupolar coupling the master equation cannot be 
solved in analytical form. Numerically simulated spectra 
are displayed in Figs. 1 and 2. The spectra in Fig. 1 refer to 
Tip e]l:periments in which the density operator is prepared 
in a T 11 (a) state by a (1T /2) y preparation pulse. The spec­
tra in Fig. 2 refer to T 2p experiments in which the initjal 
density operator is proportional to the equilibrium T 10 

state. The initial density operator evolves into the different 
coherences indicated in the figures. The spectra are the 
Fourier transform of the numerically solved time-evolution 
Eqs. (16) and (17) with the appropriate initial conditions. 
The Tip spectra show a central line and one satellite pair 
[the central component of the TZI (s) coherence is insignif­
icant], whereas the spectra in Fig. 2 show two satellite 
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30 
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+ 
·2 0 2 

kHz 

FIG. 2. Same as Fig. 1, but with the initial density operator in the 
equilibrium 1'10 state [T2p experiments, Fourier transform of the numer­
ically solved time-evolution Eq. (17)]. 

pairs. Satellites are liable to inhomogeneous line­
broadening due to BI inhomogeneity and/or a possible 
distribution in wQ' Accordingly, in the Tip spectra the 
central line is designated for relaxation studies . 

APPROXIMATE SOLUTIONS 

Although a numerical integration procedure is feasible, 
approximate solutions might be convenient. These solu­
tions can be obtained under the assumption that the line­
widths are much smaller than the frequencies k i • In this 
situation, the eigenoperators in Eqs. (12) and (13) are still 
approximate eigenoperators. The resonance positions (i.e., 
the frequencies k i ) and relative intensities are given by the 
results in Table II. 

To obtain approximate values of the relaxation rates, 
Eqs. (16) and (17) have to be transformed to the approx­
imate eigenoperator representation. The operators A ±3' 

B±I' and B±z oscillate with frequencies ±kl' ±kz, and 
±k3' respectively. If the linewidths are much smaller than 
the frequencies k i these operators relax independently and 
are decoupled from any other eigenoperator. The operators 
Al and A2 do not oscillate [any linear combination repre­
sents an eigenoperator of Eq. (10)]. Accordingly, these 
operators are coupled (by the relaxation contribution) and 
some further simplifying assumptions are necessary. 

For decoupled operators, the relaxation rates are given 
by the real part of the diagonal elements of the master 
equation in the approximate eigenoperator representation. 
The imaginary part represents the frequencies. The diago­
nal elements are given by 

and 

AI: 3wi/~(al-a4) -at> 

A2 : -4tJJT/~(a2-a4) -a4+4tJJQCUI/~I1, (20) 

A±3: -wi/~(3/2al-2a2+a4) - (az+a3)/2 

-2wQCUI/~I1±ikl 

(21) 
B±z: - (rl +r2+r3+r4)/4-wQI'kl (rl-rZ-r3 

+r4)/4+WI/kll1 ± ik3' 

In the Tip experiments, the relaxation rate of the satellites 
(at frequencies ±kl ) is readily identified with the rate of 
the operators A±3' The rates of the two satellite pairs at 
frequencies ± kz and ± k3 (T zp experiments) are given by 
the rates of the operators B±I and B±z, respectively. How­
ever, satellites are liable to line-broadening by rf field in­
homogeneity effects and/or a possible distribution in static 
quadrupolar coupling. Accordingly, their widths have little 
practical value. 

In the Tip experiments a central line is observed which 
is not dephased by an inhomogeneous wQ or Bl (apart 
from their effect on the relaxation rate). The relaxation 
behavior of this central line is related to the relaxation of 
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the operators A I and A2 and is sensitive to the spectral 
density at frequencies kl' wo, and 2wo. These operators 
are coupled, and, in principle, the relaxation is biexponen­
tial. The amplitudes and rates of both components have to 
be determined by numerical integration of the master Eq. 
(16). It was numerically checked that for any reasonable 
set of experimental parameters the amplitude of one com­
ponent is negligibly small and the relaxation is quasiexpo­
nential. The full time-evolution matrix in the approximate 
eigenoperator representation shows that the operators A I 
and A2 are decoupled in two limiting cases, i.e., if the spec­
tral densities J I (wo) and J2(2wO} are negligibly small with 
respect to the low frequency contribution Jo(k l ) and/or if 
JI(wo} =J2(2wO}' These situations are experimentally of­
ten met. 

If the operators AI and A2 are decoupled, the relax­
ation of the central line is purely exponential. The rate is 
given by the diagonal element corresponding to the oper­
ator A 2• Accordingly, in the Tip experiments the rate of 
the central line (denoted by superscript c) reads 

(22) 

The relaxation rate is sensitive to the spectral density at 
frequency kl' which reduces to 2wI if the static quadrupo­
lar Hamiltonian is neglected. Moreover, this spectral den­
sity is weighed by the factor 6wI/,q. In the conventional 
TIp experiment without coherence transfer, the relative 
amplitude of the central line is given by 4wI/kI (see Table 
II). In the limit WI>WQ this relative amplitude reduces to 
unity and the density operator relaxes according to Eq. 
( 19). 

To illustrate the relaxation behavior of the central line, 
a numerical example is presented. Under the condition 
WO'Te> 1, the high frequency contributions J I (wo) and 
J2(2wO} are immaterial. The spectral density Jo(k l } is 
taken to be a Lorentzian 

(23) 

with e2qQ/h the coupling constant of the fluctuating qua­
drupolar interaction. The relaxation rate vs wl/21T is de­
picted in Fig. 3 for a number of correlation times. The 
other parameters are as in Fig. 1. The approximate solu­
tion Eq. (22) is indiscernible from the rate obtained from 
the numerically solved time-evolution Eq. (16) (the line­
widths are much smaller than the frequency k l ). For 
wl'Te<l, the rate increases with increasing spin-lock field 
strength according to (6wI/kI) [3/40(e2qQ/Ii}2'Tcl and 
eventually levels off at 3/2 [3/40(e2qQ/Ii}2'Tel. For longer 
correlation times, i.e., WI'Te;:::; 1, the rate displays a maxi­
mum due to the spectral density dispersion. The position of 
this maximum depends on the value of the correlation time 
and/or the static quadrupolar interaction. The limiting be­
havior Eq. (19) is also displayed in Fig. 3. For small spin­
lock field intensities the static quadrupolar Hamiltonian 
can clearly not be neglected. The limiting behavior is re­
covered, if WI exceeds, say, five times wQ' 

1.2 

;;, 1 

~ 
~ 0.8 
$ 
;;- 06 ,,' 
~-

0.4 

0.2 '\.. 

ffi~,--~--=d~10~2--~~~~1~~~~~~1~~~~~~1~ 

w/21f1 Hz 

FIG. 3. The full curves represent the TIp relaxation rate Eq. (22) of the 
central line vs the spin-lock field strength WI/21T. The dashed curves 
represent the limiting behavior Eq. (19) under the neglect of the static 
quadrupolar Hamiltonian. The various correlation times are indicated in 
the figure and the other parameters are as in Fig. I. 

EXPERIMENT 

Experiments were performed on a Bruker AM-200 
spectrometer equipped with a 4.7 T superconducting mag­
net and a fast recovery preamplifier. To achieve a homo­
geneous B I field, a homemade probe with a solenoid coil 
was used. To minimize dielectric heating during spin­
locking, a Faraday shield was mounted around the sample 
inside the coil and at one side connected to ground. The 
temperature was controlled at 294 K by a fluid thermostat 
using Fluorinert grade FC-43 (3M Co.). The hard (1T/2) 
pulse duration was typically 11.5 J.Ls, whereas the spin-lock 
field intensity was tuned between 0.37 and 4.08 kHz using 
a Bruker BFX-5 low power transmitter. (Methyl 
Sulfoxide)-d6 (DMSO-d6, Janssen) was dissolved in ZLi-
1052 Merck liquid crystal. At a concentration of 5% by 
weight the deuterium signal shows a static quadrupolar 
splitting 2wQ of the order of 2 kHz. 12 The carrier rf fre­
quency was adjusted exactly on resonance. 

The general spin-lock pulse sequence is represented by 

(1T/2)"'+90- (B I )",- (1T/2) ",,-detection. (24) 

For T 2p experiments the first prep~ration pulse is omitted. 
The final pulse is included for double-quantum filtration. 
For this purpose, the phase c/J is stepped through the values 
0°,90°, 180°, and 270° while the receiver phase is alternated 
between 0° and 180°. \3 The phase c/J' is set to the values 0° 
or 45° for selective detection of T22 (a) or T22 (S}, respec­
tively. For experiments without coherence transfer, the fi­
nal detection pulse is omitted. 

The double-quantum filtered TIp and T 2p spectra are 
displayed in Figs. 4 and 5, respectively. The top spectra 
spow the created and selectively detected T22 (s)[T1pl and 
T 22 (a) (T2p ) coherences. For the bottom spec!ra, the de­
tection was optimized for the unexpected T 22 (a} and 
T22 (S) cohereI!ces, respectively. In the TIp experiment 
(Fig. 4), no T d a) signal could be detected. Th~ T 2p 

bottom spectrum shows a very small unexpected T 22 (S) 

signal and an incomplete suppression of the 1'22 (a) coher-
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FIG. 4. Double-quantum filtered spectra resulting from the TIp experi­
ments. The difference of the sections in the FI dimension (Fourier trans­
form with respect to the spin-lock time) taken at the resonance positions 
of the two satellites in F2 is displayed. The top spectrum shows the 
created and selectively detected T 22 (S) signal, whereas for the bottom 
spectrum the detection was optimized for the (unexpected) T22 (a) co­
herence. The spin-lock increment time amounts 200 JLs. The solid line is 
a simplex fit of the numerically solved time-evolution Eq. (16) with WI/ 

21T=917 Hz and Wc(21T=1l35 Hz. A 30 Hz Lorentzian line-broadening 
was applied to minimize truncation effects of the slowly relaxing central 
component. 

ence. These effects are due to pulse phase imperfections. 
The top spectra are supplemented with a simplex fit of the 
numerically solved time-evolution Eqs. (16) and (17). The 
positions and relative amplitudes of the different reso­
nances agree with the theoretical results. The spectral den­
sities were obtained from separate relaxation measure­
ments (see below) and not fitted to these data. The two 
satellite pairs of the T 2p spectrum and the satellites of the 
Tip spectrum are broadened by 40 and 90 Hz, respectively, 
mainly due to BI field inhomogeneity. 

The width of the central line has been investigated 
using the Tip experiment, but without coherence transfer 
[Le., without the last pulse in Eq. (24)]. Now, the detected 
signal contains a mixture of T11 (a) and T21 (s) (the latter 
coherence is observable due to transverse relaxation during 
the detection period). The double-quantum coherence does 
not evolve into detectable magnetization. The sweep width 
in the FI dimension (Le., the Fourier transform with re­
spect to the spin-lock time) is adjusted to 33.3 Hz!,. and, 
hence, satellites are not observed. Moreover, the T21 (s) 
coherence does not show a significant central line (see Fig. 
1). Accordingly, the detected signal essentially represents 

r 

I 

-2 -1 o 1 2 

kHz 

FIG. 5. Same as Fig. 4, but for T 2p experiments. ~ere, the top spectrum 
represents the created and selectively detected T22 (a) signal. For the 
bottom spectrum the detection was optimized for the (unexpected) 
T22 (S) coherence. The latter spectrum shows an incomplete suppression 
of the T22(a) signal (in dispersion mode) and a very small central feature 
due to the presence of T22 (S) coherence. These effects are due to pulse 
phase imperfections. The spin-lock increment time amounts 250 JLs. The 
solid line is a simplex fit of the numerically solved time-evolution Eq. 
(17) with fit parameters and applied Lorentzian line-broadening as in 
Fig. 4. 

the central component of the Til (a) coherence. 
The spin-lock relaxation rate of the central line is de­

picted in Fig. 6 vs the ratio WI/WQ. The rate shows an 
increase with increasing rf field strength, but does not show 
a maximum. This indicates the absence of a spectral den­
sity dispersion in the present frequency range (k l = 1.4-8.2 
kHz), Le., Jo(O) =Jo(kl ). The rates obtained from the nu­
merically solved time-evolution Eq. (16) were fitted to the 
experimental values. For this purpose, the high frequency 
contributions J I (wo) and J2(2wO) were obtained from a 
Jeener-Broekaert experiment. I

,2 The values are J I (wo) 
=O.95±0.02 s-I and J2(2wO) =0.89±O.02 S-I. The spin­
lock field strength as well as the static quadrupolar cou­
pling constant were obtained from the resonance positions 
in the double-quantum filtered T 2p spectrum. The solid 
line in Fig. 6 represents the simplex fit with only one ad­
justable parameter, Le., Jo(O) =Jo(kl ) = 1.28±0.15 S-I. 
There is excellent agreement. 

CONCLUSIONS 

Differential equations were derived which describe the 
dynamics of spin 1= 1 nuclei in the presence of a rf field 
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FIG. 6. (0) Experimentally observed Tip relaxation rate of the central 
component of the TII(a) coherence vs the ratio WI/WQ' (-)Theoretical 
result from the numerically solved time-evolution Eq. (16) with J1(wo) 
=0.95:1:0.02 5- 1, J2(2wO)=0.89:1:0.02 s-1, and Jo(0)=Jo(k l )=1.28 
:1:0.155- 1 (fitted). Experimental parameters, W!l21T=1l85 Hz and a 
spin-lock increment time of 30 ms. The static quadrupolar constant is 
somewhat higher compared to the value observed in the double-quantum 
filtered experiments (Fig. 5) due to a slightly different DMSO-d6 
concentration. 

and both a static and fluctuating quadrupolar interaction. 
If relaxation effects are included, the time-evolution cannot 
be solved in analytical form. However, approximate solu­
tions were obtained under the assumption that the line­
widths are much smaller than the characteristic line­
splitting. The relaxation rate of the central component (the 
conventional TIp relaxation rate) increases with increasing 
ratio wtiCtJQ and eventually levels off for CtJI>WQ' The rate 
is sensitive to the value of the spectral density function at 
frequency k) = ~CtJ~+4cu~ and shows a maximum in the 
presence of a slowly fluctuating quadrupolar interaction 
(i.e., low frequency molecular motion). The limiting relax­
ation behavior under neglect of the static quadrupolar 
Hamiltonian is recovered if W) exceeds, say, five times wQ' 

Experiments were performed on DMSO-d6 in liquid 
crystal ZLi 1052. The selective creation of T 22 (s) and 

T22 (a) multipolar states in TIp and T 2p experiments, re­
spectively, is demonstrated. The spin-lock field strength 
dependence of the relaxation rate of the central component 
of the spin-locked magnetization [Til (a)] has been mea­
sured and agrees with the theoretical results. The central 
component is not inhomogeneously broadened due to an 
inhomogeneous B) and/or wQ' i.e., apart from their ex­
plicit effect on the relaxation rate. 

The present contribution expands the range of appli­
cations for relaxation studies in systems in which the qua­
drupolar interaction is not completely averaged by molec­
ular motion. Apart from low molecular weight liquid 
crystals, these systems include solid state molecular crys­
tals and liquid crystal polymers. The spin-lock experiments 
may provide information regarding low frequency collec­
tive motion, e.g., director fluctuations and hydrodynamic 
modes. 14 

Note added in proof. Matrices similar to Eqs. (10) and 
(11) have been reported by Barbara. 15 
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