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We have derived the differential equations that describe the
dynamics of spin-3/2 nuclei in the presence of radiofrequency (RF)
fields and both static and fluctuating quadrupolar interactions.
The formalism presented was used to predict the sodium triple-
quantum-filtered (TQ-filtered) signal loss in a whole-body scanner,
where the widths of the hard 90° RF pulses are on the same order
of magnitude as the transverse relaxation times. A small piece of
bovine nasal cartilage, known for exhibiting residual quadrupolar
splittings, was used to test the theory. The sample was modeled as
consisting of small domains, each characterized by a static qua-
drupolar interaction constant, with an overall Gaussian distribu-
tion across the sample. An increase of about 15% in the TQ-filtered
signal strength, as the 90° RF pulse width was decreased from 500
to 100 ms, was predicted and demonstrated experimentally for this
particular sample. © 2000 Academic Press

Key Words: relaxation; quadrupolar nuclei; cartilage; sodium;
imaging.

INTRODUCTION

Sodium MRI has been proposed as a means to diagnos
monitor pathology in humans (1, 2). One of the main thrus
or the pursuit of sodium MRI lies in the large changes
odium content that are associated with the developme
athology. In the brain, for example, there is a large con

ration gradient across the cell membrane. This gradient re
rom the active maintenance of a relatively low intracell
odium concentration (;10 mM in normal brain cells) again
very large extracellular sodium pool (with an average b

oncentration of 140 mM). The large difference in sod
ontent between these two tissue compartments is of c
mportance for the brain’s function and, because of its l
nergetic cost, is highly sensitive to the changes in b
hysiology that follow the onset of disease. Because the

racellular sodium content is in equilibrium with the plas
which has a fixed sodium content of 140 mM), the intra
ular compartment can exhibit very large (.100%), and dis

1 This work was supported, in part, by the Whitaker Foundation and b
HS Grant R01 HL64205-1.
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inctive, changes in sodium concentration during the cour
isease. Therefore, a means for monitoring the intrace
odium contentin vivo using MRI could prove to be a ve
seful tool for the diagnosis and follow-up of disease in
ans.
Different schemes have been proposed for separatin

odium NMR signal from the intra- and extracellular comp
ents (3–8). Among them, triple-quantum (TQ) filtered NM

echniques have received considerable attention becau
heir noninvasive nature and relatively simple implementa
lthough the characteristics of the TQ-filtered sodium N
ignal have been well described in various organ systems
nimal models (9–11), it is only recently thatin vivo TQ-

filtered sodium MRI in humans has been demonstr
(12, 13). This stems from the relatively weak nature of
TQ-filtered sodium NMR signal, which requires the use
efficient imaging schemes (14) in order to produce images

cceptable signal-to-noise ratio (.15:1) in reasonable imagin
imes (,20 min).

As previously demonstrated (13), the TQ-filtered sodium
ignal has a strong dependence on the spatial distribution
adiofrequency (RF) field and, in particular, can be be
bserved in whole-body scanners if no refocusing pulse
sed. This approach is a major departure from that used
iously in small bore systems (10, 15), where the use of refo
using pulses was advocated as a means to reduce sign
ue to main magnetic field inhomogeneities. The use of
pproach is justified by the fact that over a large (.15 cm) field
f view (FOV), the signal loss due to inhomogeneous
xcitation typically exceeds that arising because of main
etic field inhomogeneities (13). A further consequence of t
se of TQ-filtered sodium MRI over large FOVs is that the
ulses required to produce a 90° nutation are much large

hose employed in small bore systems (i.e., 500ms vs 40ms).
Such long RF pulses could give rise to unwanted signal
during RF excitation, which is difficult to minimize due to t
hardware limitations of whole-body scanners and/or pa
safety concerns.
e
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180 HANCU, VAN DER MAAREL, AND BOADA
The dynamics of a spin-3/2 system cannot be describe
the classical Bloch equations, and there exists no previ
published theoretical model to estimate the signal loss in
conditions. As the signal-to-noise (SNR) of the TQ-filte
sodium images is low, and the signal loss during RF excita
is difficult to minimize due to hardware constraints, a theo
ical model for its calculation could be an invaluable tool for
optimization of TQ-filtered sodium MRI applications.

We present a theoretical model for the calculation of
filtered sodium MRI signal loss during RF excitation in b
logical media. As part of the model, we derive the differen
equations that describe the evolution of a pool of spin
nuclei (simulating the biological tissue) in the presence of
field and static and fluctuating quadrupolar interactions. O
the limiting case for which the correlation time of the fluc
ations is smaller than the inverse of the quadrupole splitti
considered. The pool of spins is modeled as composed
multitude of domains, each characterized by a static qu
polar interaction parameter, with an overall Gaussian dist
tion (averagev# Q and standard deviations) across the sampl
The fluctuating interactions induce relaxation. Through the
of irreducible tensor operators and following the formal
developed for spin-1 nuclei (16), it is shown that the equatio

f evolution can be decomposed into two sets of differe
quations, which evolve independently and are coupled
hange of RF phase. These equations are solved for
uadrupolar interaction constants in the range [v# Q 2 3s, v# Q 1

3s], and the results are added together using the under
Gaussian distribution, so that the macroscopic behavior o
spin system can be predicted.

Using this model, the TQ-filtered sodium MRI signal l
during RF excitation was predicted for a sample of bo
nasal cartilage. The experimental data, collected using a
spectrometer due to the capability of achieving a large ran
pulse widths (12ms to 1 ms), was found to agree very well w
the theoretical predictions. The results from these inves
tions suggest that the signal loss during RF excitatio
TQ-filtered sodium MRI using whole-body scanners is
likely to exceed 15%.

THEORY

1. Differential Equations

The dynamics of the system of spins is described by
evolution of the density operator. All calculations reported
are done in the Larmor frequency rotating frame, indicate
an asterisk. The time evolution of the density matrix und
static HamiltonianH*S (time-independent) and a fluctuat
part H*QF(t) is given by the master equation (17)

ds*

dt
5 2i @H*S, s* # 1 f~s* !. [1]
by
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The relaxation termf(s*) is expressed as

f~s* !

5 2E
0

`

^@H*QF~t!, @e2iH*StH*QF~t 2 t!eiH*St, s* ~t!##&dt.

[2]

hroughout this work, the density operator and the Hamilton
re represented in terms of irreducible tensor operators18).
ymmetric and antisymmetric combinations are defined as

Tlm~s! 5 ~1/Î2!~Tl2m 1 Tlm!

Tlm~a! 5 ~1/Î2!~Tl2m 2 Tlm!. [3]

rthonormal tensor operatorsT̂lm are also introduced, being mo
convenient to use. They are related to theirTlm counterparts (18)
T̂lm 5 alTlm) and fulfill the orthogonality relationsh

Tr{ T̂lmT̂l9m9
1 } 5 dll9dmm9, with T̂lm

1 5 (21)mT̂l2m. For spin-3/2, th
coefficientsal have the values 1/2 (l 5 0), 1/=5 (l 5 1),
(1/2)=2/3 (l 5 2), and (1/3)=2 (l 5 3). Symmetric and ant
symmetric combinations of unit tensor operators are defined
ogously to Eq. [3]. For spins-3/2, 16 basis operators are nee
describe the spin dynamics:T̂00 (the identity),T̂10 (longitudina
magnetization),T̂11(a) and T̂11(s) (proportional to thex- and y-
magnetization, respectively),T̂20 (quadrupolar spin polarization
T̂21(s) and T̂21(a) (second-order single-quantum coherenc
T̂22(s) andT̂22(a) (second-order double-quantum coherencesT̂30

(octopolar spin polarization),T̂31(s) andT̂31(a) (third-order single
quantum coherences),T̂32(s) andT̂32(a) (third-order double-quan-
tum coherences), andT̂33(s) andT̂33(a) (third-order triple-quantum
coherences).

With respect to the Larmor frequency rotating frame,
Zeeman Hamiltonian (H z 5 v 0I z 5 v 0T10) vanishes. Th
static Hamiltonian in the master equation is then given by
sum of the static quadrupolar and RF contributions:

H*S 5 H*QS 1 H*1. [4]

Denoting vQ as the residual static quadrupolar interac
parameter, the static quadrupolar Hamiltonian is express

H*QS 5
1

6
vQ@3I z

2 2 I ~I 1 1!# 5 vQÎ1

6
T20 5 vQT̂20. [5]

The RF field is applied exactly on resonance along thex-axis
and has the form

H*1 5 v1I x 5 v1T11~a! 5 Î5 v1T̂11~a!. [6]

f a phase is associated with the hard pulse, this will be refl
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181RELAXATION DYNAMICS OF SPINS 3/2
in a change of base, not in the form of the RF Hamilton
Assuming that a hard pulse of phaseF1 is followed by a har
pulse of phaseF2, the change in base can be expressed as

Tlm
~a!~a! 5 Tlm

~b!~a!cos@m~F2 2 F1!#

1 iT lm
~b!~s!sin@m~F2 2 F1!#, [7a]

Tlm
~a!~s! 5 Tlm

~b!~s!cos@m~F2 2 F1!#

1 iT lm
~b!~a!sin@m~F2 2 F1!#. [7b]

The superscripts (b) and (a) stand for “before” and “after”
change of phase.

The zero-average fluctuating quadrupolar interaction ca
expressed as

H*QF~t! 5 CQ O
m522

2

~21! mT2meimv0t@F22m~t! 2 ^F22m&#.

[8]

Here,CQ 5 =6/eQ/(2I (2I 2 1)\) 5 eQ/(\=6) (Q is the
uadrupolar moment of the nucleus and the other symbols

heir usual meaning), the electric field gradient tensor com
ents,F 2m, are defined elsewhere (16), and ^F 2m& represent

their average value.

d

dt 1
T̂11~a!

T̂20

T̂21~s!
T̂22~s!
T̂31~a!
T̂32~a!
T̂33~a!

2 5 1
0 0 i Î3/5 vQ

0 0 2i Î3 v1

i Î3/5 vQ 2i Î3 v1 0 2
0 0 2iv1

0 0 i Î2/5 vQ

0 0 0 iv
0 0 0

with the second one being

d

dt 1
T̂10

T̂11~s!
T̂21~a!
T̂22~a!

T̂30

T̂31~s!
T̂32~s!
T̂33~s!

2 5 1
0 2iv1 0 0

2iv1 0 i Î3/5 vQ 0
0 i Î3/5 vQ 0 2iv1

0 0 2iv1 0
0 0 0 0
0 0 i Î2/5 vQ 0 2i
0 0 0 ivQ

0 0 0 0
.

e

be

ve
o-

(a) Evolution Neglecting of Relaxation

Using Eqs. [5] and [6] to express the static Hamiltonian
neglecting the relaxation contribution, the master equa
becomes

ds*

dt
5 2i @vQT̂20 1 Î5 v1T̂11~a!, s* #. [9]

With the commutation relations (18), Eq. [9] reduces to tw
ets of coupled differential equations. The first one is

b) Relaxation Effects

Using the present formalism, relaxation effects can be e
ncorporated into the differential equations (through the a
ion of the relaxation contribution to the master equation)
eglecting the terms oscillating with multiples of Larmor
uency and using Eq. [8], Eq. [2] transforms to

f~s* ! 5 2CQ
2 O

m522

2 E
0

`

@T2m, @e2iH*StT2m
1 eiH*St, s* ~t!##

3 ^@F*2m~t! 2 ^F*2m&#

3 @F2m~t 2 t! 2 ^F2m&#&eimv0tdt. [11]

The relaxation term reduces to a combination of spectral de

0 0 0
0 0 0

i Î2/5 vQ 0 0
0 ivQ 0
0 2i Î5/ 2 v1 0

2i Î5/ 2 v1 0 2i Î3/ 2 v1

0 2i Î3/ 2v1 0

21
T̂11~a!

T̂20

T̂21~s!
T̂22~s!
T̂31~a!
T̂32~a!
T̂33~a!

2 , [10a]

0 0 0
0 0 0

i Î2/5 vQ 0 0
0 ivQ 0

2i Î6 v1 0 0
v1 0 2i Î5/ 2 v1 0

2i Î5/ 2 v1 0 2i Î3/ 2 v1

0 2i Î3/ 2 v1 0

21
T̂10

T̂11~s!
T̂21~a!
T̂22~a!

T̂30

T̂31~s!
T̂32~s!
T̂33~s!

2 . [10b]
0
0
iv1

0
0

Q

0

0
0
0
0
0

Î6
0
0
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182 HANCU, VAN DER MAAREL, AND BOADA
functions at a number of frequencies. The imaginary part o
spectral density functions results in very small, second-o
frequency shifts and in a weak coupling of the two set
differential equations. We will ignore these dynamic freque
shifts, but they can easily be derived with the results collect
Tables 1–3. The real part of the spectral density function is de
as

Jm~v! 5 ~6CQ
2/ 2! E

2`

`

^@F*2m~t! 2 ^F*2m&#

3 @F2m~t 2 t! 2 ^F2m&#&eivtdt. [12a]

If the correlation function is taken to be single-expon
tial with a correlation timetc, the spectral density functio
takes the Lorentzian form

Jm~v! 5 ~eQ/\! 2/ 20^~Vzz 2 ^Vzz&!
2&tc/~1 1 v 2t c

2!.

[12b]

Here, thezz-component of the electric field gradient (EFG
enoted byVzz and^Vzz& represents its residual average over al

sites that the counterion accesses in times less than the inv
the quadrupolar splittings and/or linewidths over these sites.
are often several independent processes at different time

d

dt 1
T̂11~a!

T̂20

T̂21~s!
T̂22~s!
T̂31~a!
T̂32~a!
T̂33~a!

2 5 21
J1 1 2/5J2 0 0

0 2J1 1 2J2 0
0 0 J1 1
0 0 0

2Î6/5J2 0 0
0 0 0
0 0 0

and

d

dt 1
T̂10

T̂11~s!
T̂21~a!
T̂22~a!

T̂30

T̂31~s!
T̂32~s!
T̂33~s!

2 5 21
2/5J1 1 8/5J2 0 0

0 J1 1 2/5J2 0
0 0 J1 1 2J2

0 0 0
4/5J1 2 4/5J2 0 0

0 2Î6/5J2 0
0 0 0
0 0 0
e
r,
f
y
in
ed

-

e
e of
re
les

causing the loss of correlation. For systems of aquo catio
tissue, there is evidence (19–21) that there are at least two cor
lation times. The one (very short) correlation time for the a
cation itself will persist and, in addition, there will be a lon
correlation time associated with fluctuations in the macrom
ular environment. Accordingly, we have considered the spe
density functions to be expressed as a sum of at least two L
zians, each characterized by a correlation time and a mean-
quadrupole coupling constant.

The function f(s*) includes terms proportional
Jm(mv 0 6 ki), where the shift6ki is due the presence ofH*S
(ki are the 15 eigenvalues of the matrices in Eqs. [10a]
[10b]). Since the Larmor frequency,v0, is generally muc
larger than any of the frequencieski , for m Þ 0, Jm(mv 0 6
ki) ' Jm(mv 0), andH*S can be neglected in Eq. [11]. The te
with m 5 0 will be treated separately.

(i) m Þ 0 terms. The time evolution of the density mat
nder relaxation, considering only the effect of them 5 62
nd m 5 61 terms, is described by the following set
ifferential equations:
ere,J1 5 J1(v 0) andJ2 5 J2(2v 0).

(ii) m 5 0 terms. For m 5 0, the functionf(s*) has to be
fully evaluated. The appendix presents the necessary int
diate steps leading to the differential equations describin
effect of the slowly fluctuating electric field gradients. Ap
from the high-frequency contributionsJ1(v 0) andJ2(2v 0), the

0 2Î6/5J2 0 0
0 0 0 0

2 0 0 0 0
2J1 1 J2 0 0 0

0 J1 1 3/5J2 0 0
0 0 J2 0
0 0 0 J1 1 J2

21
T̂11~a!

T̂20

T̂21~s!
T̂22~s!
T̂31~a!
T̂32~a!
T̂33~a!

2 @13a#

0 4/5J1 2 4/5J2 0 0 0
0 0 2Î6/5J2 0 0
0 0 0 0 0
1 J2 0 0 0 0
0 8/5J1 1 2/5J2 0 0 0
0 0 J1 1 3/5J2 0 0
0 0 0 J2 0
0 0 0 0 J1 1 J2

21
T̂10

T̂11~s!
T̂21~a!
T̂22~a!

T̂30

T̂31~s!
T̂32~s!
T̂33~s!

2 .

@13b#
2J

2J1
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183RELAXATION DYNAMICS OF SPINS 3/2
relaxation rates are sensitive to the spectral densities a
quencies 0,l1, and l2. The (low) frequenciesl1 and l2 are
related to both the residual quadrupolar coupling and th
field strength according to expression [A2] in the Appen
However, since throughout this work we neglect any l
frequency dispersion of the order ofl1,2, we assume th
J0(0) ' J0(l 1) ' J0(l 2) 5 J0, and Eqs. [A5a] and [A5b] i
the Appendix reduce to the much simpler form

d

dt 1
T̂11~a!

T̂20

T̂21~s!
T̂22~s!
T̂31~a!
T̂32~a!
T̂33~a!

2 5 21
3/5J0 0 0 0 Î6/5J0 0 0

0 0 0 0 0 0 0
0 0 J0 0 0 0 0
0 0 0 J0 0 0 0

Î6/5J0 0 0 0 2/5J0 0 0
0 0 0 0 0 J0 0
0 0 0 0 0 0 0

2
3 1

T̂11~a!
T̂20

T̂21~s!
T̂22~s!
T̂31~a!
T̂32~a!
T̂33~a!

2 [14a]

and

d

dt 1
T̂10

T̂11~s!
T̂21~a!
T̂22~a!

T̂30

T̂31~s!
T̂32~s!
T̂33~s!

2 5 21
0 0 0 0 0 0 0 0
0 3/5J0 0 0 0 Î6/5J0 0 0
0 0 J0 0 0 0 0 0
0 0 0 J0 0 0 0 0
0 0 0 0 0 0 0 0
0 Î6/5J0 0 0 0 2/5J0 0 0
0 0 0 0 0 0 J0 0
0 0 0 0 0 0 0 0

2
3 1

T̂10

T̂11~s!
T̂21~a!
T̂22~a!

T̂30

T̂31~s!
T̂32~s!
T̂33~s!

2 . [14b]

herefore, the time dependence of the basis operators und
tatic Hamiltonian and considering the relaxation effec
iven by the sum of Eqs. [10], [13], and [14]. The two set
quations (the first set consisting on the sum of Eqs. [

13a], and [14a] and the second set by the sum of Eqs. [
13b], and [14b]) evolve independently, but are coupled
hange of RF phase by Eqs. [7a–7b]. Each set of differe
quations is linear, and the matrices are symmetric. Onc
re-

F
.
-

the
is
f
],

b],
a

ial
he

eigenvalues and eigenvectors of these matrices are know
time dependence of each of the basis vectors can be
mined. Due to the large size of the matrices in these differe
equations and to the fact that they are not very sparse, we
chosen to find numerical solutions to the master equatio
described under Methods.

2. Modeling of the Biological Sample

Biological systems are intrinsically complicated, with pr
erties varying spatially and temporally. Following (22), we

odel the sample as composed of a multitude of dom
ithin each domain, the motion of the ions is rapid, con
ting to the spectral densitiesJ0, J1, andJ2 that determine th

conventional transverse relaxation ratesT2f and T2s. The ex-
change between domains is considered negligible on a
scale exceeding the inverse line splittings and/or widths
nuclei in the domain have the same relaxation times and
simplicity, we will assume that all of the domains are cha
terized by the same relaxation times. In each domain
3/2-spin sodium nuclei experience a non-zero average EF
to the anisotropic interaction of these ions with macrom
cules, and to the nonrandom distribution of these macrom
cules within each domain (the fluctuating part induces re
ation, see above). The residual EFGs are characterized
principal valuê Vzz& along the major axis (given by the dom
orientation) and by the asymmetry parameterh 5 (^Vxx& 2
^Vyy&)/^Vzz&. Therefore, each domain will be characterized
a static quadrupolar couplingvQ that depends on the orien-
tion of the domain with respect to the main magnetic fieldB0

(defined by the anglesu andf below) (Eq. [15]) (23).

vQ 5
eQ

4\
^Vzz&~3 cos2u 2 1 1 h sin2u cos 2f! [15]

In single crystals and macroscopically oriented liquid c
tals, all of the domains have the same residual EFGs an
parallel (24, 25). If the ions/molecules are constrained wit
the domains and the domains are randomly oriented
respect toB0 (but having the same residual EFGs andh), the

MR spectrum has the well-known “Pake powder” charac
stics (21, 26). For poorly ordered samples, such as biolog
tissue, the domains are characterized by a wide distributi
^Vzz& and h values. As can be shown by simulations,
resultantvQ distribution in such samples can be approxim
as Gaussian (22). Consequently, we assumed that suc
Gaussian distribution (Eq. [16]) is valid for our sample,

W~vQ! 5
1

Î2p s
exp@2~vQ 2 v# Q! 2/ 2s 2#. [16]

Here, by v# Q we denote the average value of the st
quadrupolar interaction parameter, whiles denotes its secon
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184 HANCU, VAN DER MAAREL, AND BOADA
moment,s2 5 (vQ)2. Generally, considering a distribution
static coupling constantsW(vQ), the total NMR signal can b
expressed as an integral over all the signals correspond
different values ofvQ:

STotal 5 E W~vQ! z S~vQ, . . .!dvQ. [17]

METHODS

As we have discussed above, the evolution of spin-3/2 n
under the influence of RF fields and static and fluctua
quadrupolar Hamiltonians is described by two sets of di
ential equations. The first set is given by the sum of Eqs. [1
[13a], and [14a] and the second one by the sum of Eqs. [
[13b], and [14b]. These two sets evolve independently an
coupled at a change of RF phase by Eqs. [7a] and [7b].

The general matrix form of the two sets of equations is

dY

dt
5 MY. [18]

HereY represents a complex vector of length 7 (first set)
(second set), andM a 7 3 7, 8 3 8, respectively, symmetr
complex matrix. If we denote byM d the diagonal form of th
matrix M (obtained from the eigenvalues ofM), and byS the
similarity transform (obtained from the eigenvectors ofM),
henM d 5 S21 MS, and the solution of Eq. [18] is

Y~t! 5 S exp~Mdt!S
21Y~0!. [19]

In this equation,Y(0) represents the initial condition, a
xp(M dt) is the conventional notation for an-dimensiona

square matrix (n 5 7 or 8 in our case), with null nondiagon
elements and diagonal elements obtained from exponent
of the eigenvalues ofM multiplied by time. For all of th
experiments in this work, the initial density operator w
proportional to the equilibrium stateT̂10 (spins aligned alon
the main magnetic field). Mathematica (Wolfram Resea
Champaign, IL) was used to obtain the numerical eigenva
and eigenvectors of the evolution matrices, leading to the
time dependence of the basis elements. During the tra
pulses, the RF strength was adjusted properly in time bet
0 (RF off) and a value given by the ratio flip angle/pu
duration (RF on). The signal at the end of the train of
pulses, assuming quadrature detection, isI x(t) 1 iI y(t), being
herefore proportional to the differenceT̂11(a) 2 T̂11(s). Con-
equently, the two sets of differential equations were solve
alues of static quadrupolar interaction constants in the r
v# Q 2 3s, v# Q 1 3s], and the corresponding signals w

added together with the corresponding Gaussian weight
tion in order to obtain the total NMR signal.
to
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EXPERIMENTS

All of the experiments described below were performed
a commercial Bruker DMX-300 spectrometer (79.33-MHz
dium resonance frequency). A NMR instrument was u
(instead of an imaging scanner) to overcome the softw
hardware limitations that clinical systems impose on the s
est pulse widths that can be used for a hard 90° RF pulse (;400
ms). The extremely short RF pulses (12ms) attainable wit
such a NMR spectrometer also allowed the unbiased det
nation of the relaxation rates. Since we do not expec
relaxation rates to vary significantly as the resonant frequ
decreases from 79.33 to 33.78 MHz (the frequency of a
imaging scanner), we benefited from performing our studi
a NMR spectrometer.

The sample was a small piece of bovine nasal carti
freshly received from the slaughterhouse (all of the ex
ments were conducted within 12 h of sacrificing the anim
To ensure a homogeneous radiofrequency field acros
whole volume under study, the roughly cubic cartilage sam
(5 3 5 3 5 mm) was placed in the center of a 10-mm N
tube with the aid of small Teflon rods. The whole sys
(Teflon rods and sample) was immersed in D2O, and the
experiments were performed without spinning the sample

Two sets of experiments were performed. The first one
used to characterize the sample and the second one to
mine the triple-quantum signal loss as the RF pulse width
increased. The first set of experiments consisted of a TQ
to determine the slow transverse relaxation time (equal t
relaxation time of the triple-quantum coherence (27, 28)) and

f a double-quantum magic angle filter (DQ-MA) to determ
2f and the two parameters of the Gaussian distributio

quadrupolar coupling constants. We have assumed the s
to be homogeneously anisotropic, such that the pool of is
pic ions outside the extreme narrowing limit present in
sample was negligible. Therefore, the only ions contributin
both the TQ-filtered and the DQ-MA signal were the ion
anisotropic motion. Since in the presence of a non-zero av
EFG the relations between transverse relaxation times
spectral density functions are (20, 27, 29)

1

T2f
5 J0~0! 1 J1~v0! 1 J2~2v0! [20a]

and

1

T2s
5 J1~v0! 1 J2~2v0!, [20b]

and assuming no high-frequency dispersion (J1 ' J2), the two
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185RELAXATION DYNAMICS OF SPINS 3/2
relaxation timesT2s andT2f completely determine the releva
spectral density functions.

1. Determination of Sample Characteristics

The triple-quantum relaxation rate was measured with
aid of a simple triple-quantum filtration experiment:

Fp

2
~F!O¡

t / 2
p~F!O¡

t / 2

p

2
~F 1 90!O¡

d/ 2
p~F 1 90!O¡

d/ 2

p

2
~0! 2 acquireG . [2]

The second 180° pulse is not standard in a TQ-filtered
quence, but was needed in order to refocus the effects of tB0

inhomogeneity as the evolution time was increased (30). The
hase,F, of the RF pulses was stepped through the values

90°, 150°,2150°,290°,230°, while the receiver’s phase w
oggled between the values 0° and 180° for consecutive s
he preparation time,t, was kept constant (t 5 2.4 ms), while

the evolution time of the triple-quantum coherence,d, was
varied stepwise (12 steps, withd [ [0.4 ms, 12 ms]), and th
strength of the TQ-filtered signal was monitored. The p
width of the 90° pulses was 12.4ms, and the signals we
placed on resonance. For each value of the evolution time
signals were added together, with data points collected e
16ms (4096 total number of data points), leading to a 43-s
experiment time. The TQ-filtered signals were integrate
time (the receiver was phased such that the entire signa
present only on one channel), and a monoexponential fi
consequently performed to the 12 data points to yield
triple-quantum coherence relaxation time.

A DQ-MA filter was used to determine the fast relaxation t
of the sample, along with the two parameters of the Gau
distribution,v# Q ands. It consisted of the sequence of RF pul

p

2
~F!O¡

t / 2
p~F!O¡

t / 2

54.78~F!O¡

d
54.78~0! 2 ~acquire!. [22]

he phase,F, of the pulses was stepped through the value
0°, 180°, 270°, while the phase of the receiver was alter
etween 0° and 180°. The evolution time,d, was kept very sho

(40 ms), and the preparation time,t, was varied in seven ste
between 0.5 and 4 ms. The typical 90° pulse width was 12.ms.
e

e-

°,

ns.

e

60
ry

al
in
as
as
e

an
:

°,
ed

For each of the seven sets of data, 2400 scans were
(4.4-min total acquisition time), and each scan consisted of
points (10-ms dwell time). Provided that the RF pulse widths
short compared to the transverse relaxation times, the signa
end of the DQ-MA filter can be expressed as (29)

S~vQ, t, t! } sin~vQt!sin~vQt!e2t/T2fe2t /T2f. [23]

By integrating Eq. [23] over all of the possiblevQ values, with
the Gaussian weight function (Eq. [16]), Eq. [23] transform

S~v# Q, t, t! } $e2~t2t! 2s 2/ 2cos@v# Q~t 2 t!#

2 e2~t1t! 2s 2/ 2cos@v# Q~t 1 t!#%

3 e2t/T2fe2t /T2f. [24]

A nonlinear fit of the DQ-MA data to Eq. [24], using t
Levenberg–Marquardt algorithm, was used for every valu
the preparation time to yield values forv# Q, s, andT2f.

2. TQ-Filtered Signal Decay with the RF Pulse Widths

The TQ filter used for studying the effect RF pulse width
ignal loss consisted of a series three RF pulses followe
ata acquisition. This filter was chosen because it produce
estoverallsignal-to-noise in our clinical imaging experime
13).

p

2
~F!O¡

t p

2
~F 1 90!O¡

d p

2
~0! 2 acquire

[25]

In order to obtain a triple-quantum signal, the phaseF of the
pulses was stepped through the values 30°, 90°, 150°,2150°,

90°, 230°, and consequent signals were added/subtr
ogether, corresponding to an alternation of the phase o
eceiver between 0° and 180°. The preparation timet was
efined from the end of the first pulse up to the beginning o
econd pulse and was kept at 2.4 ms for all of the experim
he evolution timed was defined from the end of the seco

pulse up to the beginning of the third pulse and had the v
0.02 ms throughout the experiments. The power levels fo
flip angle were previously calibrated for each pulse width (
values uniformly distributed in the range [0.1–0.9 ms])
maximizing the single-quantum signal. The acquisition pa
eters for each pulse width experiment were: 600 fids a
together, 4096 points/fid, 16-ms dwell time, 60-s total exper
ment time.

RESULTS AND DISCUSSION

Figure 1 presents the time integrals of the 12 TQ-filte
signals (collected with different values of the evolution tim
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186 HANCU, VAN DER MAAREL, AND BOADA
as a function of the evolution time. Because the RF pulse
extremely narrow, the TQ-filtered signal strength is mon
ponentially decaying with the evolution time, and the de
time represents the relaxation time of the triple-quantum
herence. The diamonds represent the experimental data,
the line is the monoexponential fit. The relaxation time of
triple-quantum coherence obtained, equal to the slow t
verse relaxation time, isT3Q 5 9.92 ms.

Figure 2 shows four of the seven experimental data
ollected with a double-quantum magic angle filter using p
ration times of 0.5 ms (circles), 1.4 ms (up triangles), 3
diamonds), and 4 ms (down triangles). Also presented i
ame figure are the corresponding theoretical fits (Eq.

FIG. 1. Triple-quantum signal intensity as a function of evolution ti
Diamonds represent experimental points (time integrals of the TQ signal
the line represents the corresponding monoexponential fit. The result of
is the relaxation rate of the triple-quantum coherence,T3Q 5 9.92 ms.

FIG. 2. DQ-MA signal intensity as a function of the acquisition time. T
our sets of points shown correspond to four different values of the prepa
ime: t 5 0.5 ms (circles), 1.4 ms (up triangles), 3 ms (diamonds), and
down triangles). Along with the experimental data, the theoretical fits
24]) are presented (smooth curves). The seven fits performed (of whic
our are shown) yield the following sample characteristics:T2f 5 3.5 6 0.93
s, v# Q 5 0 rad/s,s 5 736.316 53.85 rad/s.
re
-
y
o-
ile

e
s-

ts
-
s
e
])

(smooth lines). Using the DQ-MA data sets, the param
characterizing the sample were found to be

v# Q 5 0 rad/s,

s 5 736.316 53.85rad/s,

T2f 5 3.506 0.93 ms. [26]

From the two transverse relaxation rates,T2s andT2f, the two
relevant density functionsJ0 andJ1 can be determined, (J1 5
1/(2T2s) andJ0 5 1/T2f 2 2J1), using Eqs. [20a] and [20b
The two values obtained (considering the average valu
T2f) are, respectively, 0.0504 and 0.185 kHz forJ1 andJ0.

The analytic expressions used for the DQ-MA signal (E
[23] and [24]) were deduced assuming a strong RF field (v1 @
vQ) and slow exchange between different domains with res
to the inverse of the splitting. Since we have considered a
model (i.e., there is no exchange between the domains
exchange rate is zero and satisfies the condition for obse
the DQF-MA signal.

The values ofJ0 andJ1 determined above allowed for t
two sets of differential equations (Eq. [10]1 Eq. [13] 1 Eq.
[14]) to be solved numerically as described under Meth
Figure 3 presents three of these nine simulated TQ-fil
signals (Eq. [25]) for pulse widths of 0.1 ms (solid line), 0.5
(dotted line), and 0.9 ms (dashed line). For ensuing data
the strength of the RF pulses was decreased and the
widths increased, such that the product pulse width times
strength remained constant (5p/2). For each pulse width in th
range [0.1–0.9 ms] (range relevant for clinical imaging ap
cations) the static quadrupolar coupling parameter,vQ, was
varied between [22200 rad/s, 2200 rad/s] in steps of 2 ra

nd the resulting TQ-filtered signals were stored inde
ently. Those signals were subsequently integrated with

nd
fit

on
s
.
ly

FIG. 3. Theoretical TQ signal intensity as a function of the acquis
time. The three curves correspond to RF pulse widths of 0.1 ms (solid), 0
(dotted), and 0.9 ms (dashed).
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187RELAXATION DYNAMICS OF SPINS 3/2
corresponding Gaussian weight function to yield a sin
weighted TQ-filtered signal for each pulse width.

Figure 4 presents the magnitude for three of the nine e
imental TQ-filtered signals collected with pulse widths of
ms (top), 0.51 ms (middle), and 0.9 ms (bottom) as desc
in the previous section. As can be noticed from Figs. 3 an
the simulated TQ-filtered signals and the TQ-filtered sig
acquired experimentally are very similar. Most importantly,
theoretical simulations are not fits of the TQ-filtered exp
mental data, but were generated using the relaxation th
presented before by using only the sample characteristicJ0,
J1, s) as input. However, due to the fact that Fig. 4 displays
magnitude of the experimental TQ-filtered signals, there
baseline which is not accounted for in the theoretical sim
tions (which are done in the high-temperature approxima
Fig. 3).

The accuracy of the model presented above to predic
TQ-filtered signal loss as the pulse width of the 90°
pulses is increased can also be noticed when displayin
time integral of the TQ-filtered signals as a function of
pulse width (Fig. 5). Here, the circles represent the
integrals of the experimental TQ-filtered signals, while
points generated by integrating the simulated signals
connected through a line. By repeating each experimen
times with the same acquisition parameters, the time int
of the signal varies on the order of 2%, so we estimate
the error in the experimental data presented in Fig. 5 i
the order of 2%. The set of data points and the theore
curve are normalized such that they have equal value a
0.5-ms data point. Our model indicates that a 15% incr
in the sodium TQ-filtered signal strength is obtained as
pulse width of the hard 90° pulses are decreased from 5
100 ms. This prediction is in good agreement with

xperimental results shown in Fig. 5.
The very simple domain model for the sodium ions

artilage produces experimental results very close to the

FIG. 4. Experimental TQ signal intensity as a function of acquisition t
The three curves shown correspond to RF pulse widths of 0.1 ms (top)
ms (middle), and 0.9 ms (bottom).
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retical predictions. Since the triple-quantum signal is extrem
weak, and because variations in the triple-quantum signal
human brain, cartilage, breast, etc., are suggested as
possibly connected to pathological conditions, an overa
crease of 15% in the signal strength can be essential in
ceiving important image details. However, this signal incr
as the widths of the hard RF pulses are decreased is t
connected to the properties of the tissue under study.
known that the existence of the static quadrupolar intera
parameter influences the relaxation characteristics of the o
under study. For example, it is customary to fit the TQ-filte
signal to a difference of two exponentials, with the result
the fits beingT2rise and T2fall. The relaxation timeT2rise deter-
mines the signal behavior at small times, withT2fall governing
the signal decay at long times. For narrow RF pulses, the
TQ-filtered signal dependence on the conventional trans
relaxation rates, including the quadrupolar coupling con
vQ, is (22)

TQ~t! } e2t/T2fcos~vQt! 2 e2t/T2s. [27]

Therefore, the short-time signal behavior is modulate
T2f and the distribution ofvQ’s, and the long-time behavior
described byT2s. As T2fall andT2s describe the same long-tim
signal behavior, we expect these two values not to be si
cantly different. However, since thevQ andT2f dependence a
replaced by a single parameter (T2rise) in the simpler biexpo-
nential fit, the T2f and T2rise values will most probably b
different. For human cartilageT2rise values are measured to
in the submillisecond range (31, 32), while true values ofT2f

are shown to be consistently higher (29). The human brai

FIG. 5. TQ signal time integral as a function of RF pulse widths. Cir
represent experimental data and the smooth curve the theoretical pred
For nine RF pulse widths equally distributed in the interval [0.1–0.9 ms]
signals were obtained by numerically finding the solution of the sum Eqs
[13], and [14] as described in the text. Each simulated TQ signal was c
quently integrated in time, generating a single theoretical point. The
theoretical points (joined by a line) and the experimental points are norm
such as they have equal value at the 0.5-ms time point.

.
51
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188 HANCU, VAN DER MAAREL, AND BOADA
yields values forT2rise in the range 2–4 ms. Since the brain
nown for exhibiting quadrupolar splittings, too (33), we ex-
ect the true values of the fast relaxation times to be h

han theT2rise values, leading to smaller relaxation effects
smaller TQ-filtered signal increases with decreasing RF p
widths. As a final conclusion, the TQ-filtered signal loss du
relaxation effects during the application of RF pulses ca
predicted using the theory presented above. This signal l
expected to be more significant for tissues characterize
faster relaxation rates (such as breast and cartilage) an
important for slower relaxing tissues (like brain). However,
the predictions of the theory to be accurate, the “true” re
ation times have to be previously measured, and also
distribution of static quadrupolar interaction constants has
modeled and experimentally characterized for the tissue u
study.

CONCLUSIONS

We derived the equations describing the evolution of s
3/2 in the presence of RF and both static and fluctua
quadrupolar interactions. A direct application of this the
was the study of signal loss in triple-quantum sodium M
during RF excitation. The predictions from this theory w
tested on a small piece of bovine nasal cartilage; this sa
was modeled as composed of multiple domains, characte
by Gaussian-distributed static quadrupolar interaction
stants. An increase of 15% in the TQ-filtered signal streng
the hard 90° RF pulse width was decreased from 500 to 10ms
was predicted and demonstrated experimentally.

APPENDIX

The exact time dependence of theT̂20 evolution due to th
presence of the static quadrupolar HamiltonianH*S can be
deduced by diagonalizing the matrix in Eq. [10a]. The se
eigenvalues and eigenvectors are, respectively,

0 A1 5 Î5

2

v 1
2

v Q
2 T̂11~a! 1 Î3

2

v1

vQ
T̂22~s! 1 T̂33~a!

0 A2 5 S 5v1
2

Î6vQ
2

2 Î2

3D T̂11~a!

1 Î5

2

v1

vQ
T̂22~s! 1 1 T̂31~a!

0 A3 5 Î5
v1

vQ
T̂11~a! 1 T̂20

il1 A74 5 Î2

5

vQ

v1
T̂11~a! 2 Î2 T̂20 7 Î2

3

l1

v1
T̂21~s!

2 Î2

3 S1 1
vQ

v1
D T̂22~s!
er
d
se
o
e
is

by
ess
r
-

he
be
er

s
g

y
I
e
le
ed
n-
as

n

1
1

Î15
S5 1

2vQ

v1
D T̂31~a!

6 Î2

3

l1

v1
T̂32~a! 1 T̂33~a!

il2 A75 5 2Î2

5

vQ

v1
T̂11~a! 1 Î2 T̂20 6 Î2

3

l2

v1
T̂21~s!

1 Î2

3 S1 2
vQ

v1
D T̂22~s!

1
1

Î15
S5 2

2vQ

v1
D T̂31~a!

6 Î2

3

l2

v1
T̂32~a! 1 T̂33~a!. [A1]

he two symbolsl1 andl2 are

l1 5 Îv Q
2 1 2v1vQ 1 4v 1

2

l2 5 Îv Q
2 2 2v1vQ 1 4v 1

2. [A2]

With the eigenvalues and eigenvectors displayed before
evolution ofT̂20 under the static Hamiltonian is summarized

TABLE 1
Coefficients Giving the Exact Time Dependence of the Irreduc-

ible Operator T̂20 Due to the Presence of the Static Hamiltonian H*S
(Eq. [A3])

a11(t) 2
3v1vQ

2Î5
S cosl1t

l 1
2 1

cosl2t

l 2
2 2

l 1
2 1 l 2

2

l 1
2l 2

2 D
a20(t) v Q

4 1 v 1
2v Q

2 1 4v 1
4

l 1
2l 2

2 1
3v 1

2

2 S cosl1t

l 1
2 1

cosl2t

l 2
2 D

a21(t) 2
i Î3 v1

2 S sin l1t

l1
1

sin l2t

l2
D

a22(t)
Î3 v1

2 FvQS cosl1t

l 1
2 2

cosl2t

l 2
2 D 1 v1S cosl1t

l 1
2 1

cosl2t

l 2
2 D

1
2v1

l 1
2l 2

2 ~v Q
2 2 4v 1

2!G
a31(t) 2

Î3 v1

2Î10 F 2vQS cosl1t

l 1
2 1

cosl2t

l 2
2 D 1 5v1S cosl1t

l 1
2 2

cosl2t

l 2
2 D

2
4vQ

l 1
2l 2

2 ~v Q
2 2 v 1

2!G
a32(t) i Î3 v1

2 S sin l1t

l1
2

sin l2t

l2
D

a33(t) 2
3v 1

2

2Î2
S cosl1t

l 1
2 2

cosl2t

l 2
2 1

l 1
2 2 l 2

2

l 1
2l 2

2 D
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eiH*StT̂20e
2iH*St 5 a11~t!T̂11~a! 1 a20~t!T̂20 1 a21~t!T̂21~s!

1 a22~t!T̂22~s! 1 a31~t!T̂31~a!

1 a32~t!T̂32~a! 1 a33~t!T̂33~a!. [A3]

he coefficientsaij are tabulated in Table 1.The spin operato
double commutator form 5 0 can consequently be expresse

@T̂20, @e2iH*StT̂20e
iH*St, s* ## 5 b11~t!T̂11~a!1b21~t!T̂21~s!

1 b22~t!T̂22~s! 1 b31~t!T̂31~a!

1 b32~t!T̂32~a! [A4a]

TAB
Coefficients Multiplying the Spin Operators in Eq. [A

s* b11 b21

T̂11(a)
3

5
a20 1

Î3

5
a22

1

Î5
a32

1

Î

T̂20 2
3

5
a11 2

Î6

5
a31

2a21

T̂21(s) 0 a20

T̂22(s) 2
Î3

5
a111

3

5Î2
a311 Î 3

10
a33

0

ˆ 31(a)
Î6

5
a20 2

3

5Î2
a22 2 Î 3

10
a32 2

T̂32(a) 0 2
1

Î5
a11 1 Î 3

10
a31 1

1

Î2
a33

T̂33(a) 2 Î 3

10
a22 2

1

Î2
a32 2

TAB
Coefficients Multiplying the Spin Operators in Eq. [A

s* c11 c21

T̂10 2
Î3

5
a21 2

Î3

5
a11 2

Î2

5
a31

T̂11(s) 3

5
a20 2

Î3

5
a22 2

1

Î5
a32

T̂21(a) 0 a20

T̂22(a) 0 0

ˆ
30 2

2Î3

5
a21 2

2Î3

5
a11 2

2Î2

5
a31

T̂31(s)
Î6

5
a20 1

3

5Î2
a22 Î 3

10
a32

T̂32(s) 0 0

T̂33(s) 2 Î 3

10
a22 2

1

Î2
a32
s

for s* 5 { T̂11(a), T̂20, T̂21(s), T̂22(s), T̂31(a), T̂32(a), T̂33(a)}
and as

@T̂20, @e2iH*StT̂20e
iH*St, s* ## 5 c11~t!T̂11~s! 1 c21~t!T̂21~a!

1 c22~t!T̂22~a! 1 c31~t!T̂31~s!

1 c32~t!T̂32~s! [A4b]

or s* 5 { T̂10, T̂11(s), T̂21(a), T̂22(a), T̂30, T̂31(s), T̂32(s),
T̂33(s)}. The coefficientsbij andcij are presented in Tables 2and 3
respectively, in terms of the above tabulatedaij ’s. For calculating

2
in Terms of the aij Coefficients Displayed in Table 1

b22 b31 b32

31 1 Î 3

10
a33

Î6

5
a20 1

Î2

5
a22

1

Î5
a21

2a22 2
Î6

5
a11 2

2

5
a31

2a32

0 0 2
1

Î5
a111 Î 3

10
a311

1

Î2
a33

a20 2
Î2

5
a11 1

Î3

5
a31 1

1

Î5
a33

0

a11 1
1

Î5
a33

2

5
a20 2

Î3

5
a22 2 Î 3

10
a21

0 0 a20

0
a11 2

1

Î5
a31 2

1

Î5
a22 2

1

Î2
a21

3
in Terms of the aij Coefficients Displayed in Table 1

c22 c31 c32

2
2

Î5
a32 2

Î2

5
a21 2

2

Î5
a22

1

Î2
a31 2 Î 3

10
a33

Î6

5
a20 2

Î2

5
a22

1

Î5
a21

0 0 0

a20 0 0

1

Î5
a32 2

2Î2

5
a21

1

Î5
a22

2
1

Î2
a11 2

1

Î5
a33

2

5
a20 1

Î3

5
a22 2 Î 3

10
a21

0 0 a20

2 Î 3

10
a11 2

1

Î5
a31 2

1

Î5
a22 2

1

Î2
a21
LE
4a]

2
a

1

Î2

Î 3

1

LE
4b]
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the elements in these tables, the equalityÎ3 a31 2 Î2 a11 2 Î5
a33 5 0, easily deducible from Table 1, was also used.

With the aid of the tabulatedbij andcij coefficients, the effect o

TABLE 4
Coefficients Appearing in Eqs. [A5a] and [A5b] in Terms of the

Spectral Density Functions J0(l1), J0(l2), and J0(0)

J0(l 1) J0(l 2) J0(0)

A
v1~vQ 1 v1!

l 1
2

v1~vQ 2 v1!

l 2
2 2

2v1vQ~v Q
2 1 2v 1

2!

l 1
2l 2

2

B 2
v1~vQ 1 v1!

l 1
2

v1~vQ 2 v1!

l 2
2 2

2v 1
2~v Q

2 2 4v 1
2!

l 1
2l 2

2

C 2
v1~vQ 2 2v1!

l 1
2

v1~vQ 1 2v1!

l 2
2

2~v Q
4 1 8v 1

4!

l 1
2l 2

2

D
v1~vQ 1 4v1!

l 1
2 2

v1~vQ 2 4v1!

l 2
2

2v Q
2 ~v Q

2 1 2v 1
2!

l 1
2l 2

2

E
v1~vQ 1 4v1!

l 1
2

v1~vQ 2 4v1!

l 2
2 2

2v1vQ~v Q
2 2 4v 1

2!

l 1
2l 2

2

F 2
v 1

2

l 1
2

v 1
2

l 2
2 2

4v 1
3vQ

l 1
2l 2

2

G
v 1

2

l 1
2

v 1
2

l 2
2

2

3 Fv Q
4 1 v Q

2v 1
2 1 4v 1

4

l 1
2l 2

2 G
H

v1~vQ 1 3v1!

l 1
2 2

v1~vQ 2 3v1!

l 2
2

2

3 F2v Q
4 1 5v Q

2v 1
2 2 4v 1

4

l 1
2l 2

2 G
I 2

v1~vQ 2 v1!

l 1
2

v1~vQ 1 v1!

l 2
2

2

3 F2v Q
4 2 v Q

2v 1
2 1 20v 1

4

l 1
2l 2

2 G
J

v1~vQ 2 v1!

l 1
2

v1~vQ 1 v1!

l 2
2 2

2v1vQ~v Q
2 1 6v 1

2!

l 1
2l 2

2

d

dt 1
T̂11~a!

T̂20

T̂21~s!
T̂22~s!
T̂31~a!
T̂32~a!
T̂33~a!

2 5 21
3/10D 0 0 2Î15

3Î5/10A 0 0 Î3/
0 0 3/ 2G 0

3Î15/10F 0 0 3/ 2
3Î6/ 20I 0 0 3Î10/

0 0 3/ 2F 0
3Î10/ 20B 0 0 Î6/4

nd

d

dt 1
T̂10

T̂11~s!
T̂21~a!
T̂22~a!

T̂30

T̂31~s!
T̂32~s!
T̂33~s!

2 5 21
0 0 Î15/10A
0 3/10C 0 2Î
0 0 3/ 2G
0 0 0
0 0 Î15/5A
0 3Î6/ 20H 0 3Î
0 0 0
0 3Î10/ 20B 0 Î
the slowly fluctuating electric field gradients (m5 0 term) can b
incorporated into the following set of differential equations:
The coefficientsA through J are linear combinations of th

spectral density functionsJ0(l 1), J0(l 2), andJ0(0). The co-
efficients of these linear combinations are displayed in Tab
Accordingly, the relaxation rates are sensitive to the spe
densities at low frequenciesl1, l2, and 0. Two limiting situa-
tions are of special interest. In the absence of a low-frequ
dispersion, i.e., whenJ0(0) ' J0(l 1) ' J0(l 2) 5 J0, thevQ

andv1 dependencies in the rates Eqs. [A5a] and [A5b] va
and the relaxation matrices take the simple forms of Eqs.
and [14b]. Furthermore, in the limitv1 5 0, the time evolutio
can be solved in analytical form (27). In the limit vQ 5 0, but
irrespective of a low-frequency dispersion, the rates agree
earlier results obtained in the doubly rotating tilted frame
particular, it was shown that due to relaxation under (pul
RF triple-quantum coherences are excited, without a
coherence transfer pulse (34–36).
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