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We have derived the differential equations that describe the tinctive, changes in sodium concentration during the course

dynamics of spin-3/2 nuclei in the presence of radiofrequency (RF)
fields and both static and fluctuating quadrupolar interactions.
The formalism presented was used to predict the sodium triple-
quantum-filtered (TQ-filtered) signal loss in a whole-body scanner,
where the widths of the hard 90° RF pulses are on the same order
of magnitude as the transverse relaxation times. A small piece of
bovine nasal cartilage, known for exhibiting residual quadrupolar
splittings, was used to test the theory. The sample was modeled as
consisting of small domains, each characterized by a static qua-
drupolar interaction constant, with an overall Gaussian distribu-

disease. Therefore, a means for monitoring the intracellul
sodium contenin vivo using MRI could prove to be a very
useful tool for the diagnosis and follow-up of disease in hu
mans.

Different schemes have been proposed for separating t
sodium NMR signal from the intra- and extracellular compart
ments 8—8. Among them, triple-quantum (TQ) filtered NMR
techniques have received considerable attention because
their noninvasive nature and relatively simple implementatior

tion across the sample. An increase of about 15% in the TQ-filtered
signal strength, as the 90° RF pulse width was decreased from 500
to 100 ps, was predicted and demonstrated experimentally for this
particular sample.  © 2000 Academic Press

Key Words: relaxation; quadrupolar nuclei; cartilage; sodium;
imaging.

Although the characteristics of the TQ-filtered sodium NMF
signal have been well described in various organ systems us
animal models §-11), it is only recently thatin vivo TQ-
filtered sodium MRI in humans has been demonstrate
(12, 13. This stems from the relatively weak nature of the
TQ-filtered sodium NMR signal, which requires the use o
efficient imaging schemed.4) in order to produce images of
acceptable signal-to-noise ratio {5:1) in reasonable imaging
times 20 min).

Sodium MRI has been proposed as a means to diagnose andls previously demonstratedL), the TQ-filtered sodium
monitor pathology in humansl(2). One of the main thrusts signal has a strong dependence on the spatial distribution of 1
for the pursuit of sodium MRI lies in the large changes iradiofrequency (RF) field and, in particular, can be bette
sodium content that are associated with the developmentgifserved in whole-body scanners if no refocusing pulses &
pathology. In the brain, for example, there is a large concefsed. This approach is a major departure from that used p
tration gradient across the cell membrane. This gradient resu,li§us|y in small bore systemdQ, 19, where the use of refo-
from the active maintenance of a relatively low intl’aCE”U'aéusing pu|ses was advocated as a means to reduce signal
sodium concentration10 mM in normal brain cells) againstgue to main magnetic field inhomogeneities. The use of th
a very large extracellular sodium pool (with an average bragpproach is justified by the fact that over a large.6 cm) field
concentration of 140 mM). The large difference in sodiurgs view (FOV), the signal loss due to inhomogeneous R
content between these two tissue compartments is of critiggkitation typically exceeds that arising because of main ma
importance for the brain’s function and, because of its larggsic field inhomogeneitiesi®). A further consequence of the
energetic cost, is highly sensitive to the changes in braie of TQ-filtered sodium MRI over large FOVs is that the R
physiology that follow the onset of disease. Because the Silses required to produce a 90° nutation are much larger th

tracellular sodium content is in equilibrium with the plasmg, qe employed in small bore systems (i.e., 5@0vs 40us).
(which has a fixed sodium content of 140 mM), the intracek 1, |ong RF pulses could give rise to unwanted signal lo

lular compartment can exhibit very large-100%), and dis- y,1ing RF excitation, which is difficult to minimize due to the

L This work was supported, in part, by the Whitaker Foundation and by thiardware limitations of whole-body scanners and/or patie
PHS Grant R0O1 HL64205-1. Safety concerns.
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The dynamics of a spin-3/2 system cannot be described Dige relaxation terni(o*) is expressed as
the classical Bloch equations, and there exists no previously
published theoretical model to estimate the signal loss in suchf(g*)
conditions. As the signal-to-noise (SNR) of the TQ-filtered

sodium images is low, and the signal loss during RF excitation * . AL H

is difficult to minimize due to hardware constraints, a theoret-  ~ ([Hor(t), [&7 " H Gt — me™, o* (1) ]])dr.
ical model for its calculation could be an invaluable tool for the 0 5
optimization of TQ-filtered sodium MRI applications. [2]

We present a theoretical model for the calculation of TQI; ) , L
filtered sodium MRI signal loss during RF excitation in bio- hroughout this work, the density operator and the Hamiltoniar

logical media. As part of the model, we derive the differenti&® represented in terms of irreducible tensor operats (
equations that describe the evolution of a pool of Spm_a)‘z%ymmetnc and antisymmetric combinations are defined as

nuclei (simulating the biological tissue) in the presence of a RF .

field and static and fluctuating quadrupolar interactions. Only Tim(s) = (L/\2)(T) -+ Tiw)
the limiting case for which the correlation time of the fluctu- _ 5 _

ations is smaller than the inverse of the quadrupole splitting is Tm(@) = (1/y2)(Ti-m = Tim)- 3]

considered. The pool of spins is modeled as composed of ah | - Iso introduced. bei
multitude of domains, each characterized by a static quadfelr-t onormal tensor operatafs, are aiso introduced, being more

polar interaction parameter, with an overall Gaussian distrib onvenient to use. They are related to tﬁ'wcqunterpar'tSJ(S).
tion (averagen, and standard deviation) across the sample. {/m_ = @&Tw) and fulfil the —orthogonality relationship
The fluctuating interactions induce relaxation. Through the ulE{T'f“T"m’} = ByBumy, With Ty = (=1)"T,.. FOr spin-3/2, the
of irreducible tensor operators and following the formalisfiP€fficientsa, have the values 1/2l (= 0), V5 (= 1),
developed for spin-1 nuclell§), it is shown that the equation (1/2)v 2/_3 (= 2,)’ gnd (UM (| = 3). Symmetric anq anti-
of evolution can be decomposed into two sets of differentifymmetric combinations pfunlt tensor operators are defined an
equations, which evolve independently and are coupled aP%usly 10 Eq. [3]. For spins-3/2, 16 basis operators are needec
change of RF phase. These equations are solved for stdfSCiPe the spin dynamic$y, (the identity), T, (longitudinal
quadrupolar interaction constants in the rangg f- 30, @, + nagnetization)y(a) and Ty,(s) (proportional to thex- andy-

30], and the results are added together using the underlyiﬁﬁ‘gnetizaﬁon’ respectively),, (quadrupolar spin polarization),

Gaussian distribution, so that the macroscopic behavior of tEé(S) and T»(a) (second-order single-quantum coherences

spin system can be predicted. T,,(S) and T,,(a) (second-order double-quantum coherencksg),

Using this model, the TQ-filtered sodium MRI signal los$CCtoPolar spin polarization],s,(s) andTs(a) (third-order single-

during RF excitation was predicted for a sample of boviruantum coherences,(s) and (@) (third-order double-quan

nasal cartilage. The experimental data, collected using a NN coherences), aidy(s) andTs(a) (third-order triple-guantum
spectrometer due to the capability of achieving a large rangecWe.rre;nces). h ¢ ing f h
pulse widths (12us to 1 ms), was found to agree very well with Wit respecf; to't € Laimor reﬂuency rotatmgh ramer,] th
the theoretical predictions. The results from these investiga€¢Man H.aml_tonl'anl-qz = @z = “’PT“’.) vanisnes. The
tions suggest that the signal loss during RF excitation fatic Ham|lton|§1n in the master equation |s.the.n given by tf
TQ-filtered sodium MRI using whole-body scanners is not'M of the static quadrupolar and RF contributions:

likely to exceed 15%. * * *
Hs = Hgs + H7. (4]
THEORY Denoting w, as the residual static quadrupolar interactiol

. . . parameter, the static quadrupolar Hamiltonian is expressed
1. Differential Equations

The dynamics of the system of spins is described by the = ) B 1 o
evolution of the density operator. All calculations reported here os= g wg[317 = 11+ 1)] = wq 6 120 = @qlao  [5]
are done in the Larmor frequency rotating frame, indicated by

an asterisk. The time evolution of the density matrix underhe RF field is applied exactly on resonance alongxfais
static HamiltonianH’s (time-independent) and a fluctuatingang has the form

part HG(t) is given by the master equatioh?)
Hi= ol = 0,Ty(a) = \6 w,T1(a). (6]

do* )
gt = "1[Hs o* ]+ f(o*). [1]  If a phase is associated with the hard pulse, this will be reflect
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in a change of base, not in the form of the RF Hamiltoniaa) Evolution Neglecting of Relaxation

Assuming that a hard pulse qf phade is followed by a hard Using Egs. [5] and [6] to express the static Hamiltonian an
pulse of phas&,, the change in base can be expressed as 7 ; - .
neglecting the relaxation contribution, the master equatic

becomes
Tin(@) = TR(a)cogm(®, — @y)]
+ iTR(g)siim(®, — @,)], [7a] dd—t = —i[wgTy + \B w.T1(a), o*]. [9]
Tin(s) = Tin(s)cogm(®; — dy)] With the commutation relationd.8), Eq. [9] reduces to two
+iT2(a)sitm(®, — ®,)]. [7b] sets of coupled differential equations. The first one is
T(a) 0 0 iy3/5wq O 0 0 0 T(a)
Ta0 0 0 —iy3w;, O 0 0 0 T2
Tau(s) iV35wg—i\3w;, 0  —iwy i,2/5w, 0 0 Tau(s)
dt :rzz(s) = 0 0 —lw,; 0 0 wg 0 :rzz(s) , [10a]
Tsi(a) 0 0 i \,% wg O 0 =i \/ﬁ o 0 Ta(a)
Tax(@) 0 0 0 iwg —i\5/2 w 0 —i\3/2 w,| | Tala)
Tss(a) 0 0 0 0 0 —i \/ﬁwl 0 Tss(a)
with the second one being
T 0 —iw; 0 0 0 0 0 0 T1o
T1(9) —iw 0 i \/% wg 0 0 0 0 0 Ti(s)
Tou(a) 0 i\385w0 0 —ioy 0  i2/5a 0 0 T,u(a)
d | T,u(a) 0 0 —iw; 0 0 0 iwg 0 T..(a)
at| T, [T] 0o o 0 0 0 —iBao 0 0 T, |- [20b]
Tai(s) 0 0 250 0 —i\6w, O —i\5/2 w, 0 Tau(s)
T32(s) 0 0 0 iwg 0 -i5/2w 0 —i 312 w, ']'32(5)
Tas(9) 0 0 0 0 0 0 —i\3/2 w, 0 Tss(9)
The superscripts (b) and (a) stand for “before” and “after” thip) Relaxation Effects
change of phase. . : :
The zero-average fluctuating quadrupolar interaction can beUsmg the p_resent for_mahsm_, relaxat|_on effects can be eas
expressed as |_ncorporated into _the d|ffer_ent|_al equations (through the add
tion of the relaxation contribution to the master equation). B
neglecting the terms oscillating with multiples of Larmor fre-
2 quency and using Eq. [8], Eqg. [2] transforms to
o) =Cq X (—1)Tone ™ [Fon(t) = (Foom].
m=-2

2

(8] flo*) = -C§ X j [Tom [&7"5T 3085, 0* (1)]]

m=-2
Here,Co = V6/eQ/(21(2I — 1)4) = eQ(AV6) (Q is the X ([Fan(t) — (F%m]
uadrupolar moment of the nucleus and the other symbols have )
e y X [Fan(t— 1) = (FaDe™dr.  [11]

their usual meaning), the electric field gradient tensor compo-

nents,F,,, are defined elsewherd ), and(F,,) represents
their average value. The relaxation term reduces to a combination of spectral dens
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functions at a number of frequencies. The imaginary part of thausing the loss of correlation. For systems of aquo cations
spectral density functions results in very small, second-ordéssue, there is evidenc&q9-2J that there are at least two corre-
frequency shifts and in a weak coupling of the two sets tdtion times. The one (very short) correlation time for the aqu
differential equations. We will ignore these dynamic frequenaation itself will persist and, in addition, there will be a longel
shifts, but they can easily be derived with the results collecteddorrelation time associated with fluctuations in the macromole
Tables 1-3. The real part of the spectral density function is defingdr environment. Accordingly, we have considered the spect
as density functions to be expressed as a sum of at least two Lore
zians, each characterized by a correlation time and a mean-sq
. quadrupole coupling constant.
In(w) = (6C%/2) J ([F%(t) — (F5] The function f(¢o*) includes terms proportional to
Jn(mw, = k;), where the shiftck; is due the presence 6f’
_ (k; are the 15 eigenvalues of the matrices in Eqgs. [10a] at
X [Fon(t = 7) = (Faw])e'®dr.  [12a] [10b]). Since the Larmor frequencyy,, is generally much
larger than any of the frequenciks for m # 0, J,(mMw, =
If the correlation function is taken to be single-exponerk) = Ju(Mwo), andH’ can be neglected in Eq. [11]. The term
tial with a correlation timer,, the spectral density functionWith m = 0 will be treated separately.
takes the Lorentzian form (i) m # 0terms. The time evolution of the density matrix
under relaxation, considering only the effect of the= =2
= =+
I () = (€QIR) 4 20(V,, — (V,0) B7d(1 + w?r?), Zir;fdern;mial_e;ut;ircr;zz is described by the following set of

[12b] Here,J; = Ji(wo) andd, = J,(2wy).

—o

Tiy(a) J+2/5), 0 0 0 —y6/53, 0 0 |[Tu(@
Tao 0 23, + 23, 0 0 0 0 0 Tao
q | Ta(s) 0 0 Jh+23, 0 0 0 0 || Tu®s
gt | T8 | = - 0 0 0 2, + J, 0 0 0 T2x(s) [134]
Tay(a) —\/6/53, 0 0 0 J,+3/53, 0 0 Tau(a)
Ta(a) 0 0 0 0 0 J, 0 T(a)
Tas(a) 0 0 0 0 0 0 J,+ 3y \Tas(a)
and
T 2/5J, + 8/5J, 0 0 0  4/5), — 4/5J, 0 0 0 Tio
Tiu(s) 0 J,+2/5J, 0 0 0 -6/53, 0 0 Ti(s)
T,.(a) 0 0 J+23, O 0 0 0 o0 T,(a)
d | T,(a) 0 0 0 2L+, 0 0 0 0 T,i(a)
dt| Ts |~ 7| 4/53, — 4/53, 0 0 0  8/5), + 2/5J, 0 0 o0 Ta0
Tau(s) 0 —\6/53, 0 0 0 J;+3/5J, 0 0 Tai(s)
Ta(5) 0 0 0 0 0 o J, O Taa(s)
Tas(s) 0 0 0 0 0 0 0J,+ 3l | Toxls)
[130]

Here, thezzcomponent of the electric field gradient (EFG) is (i) m = 0 terms. Form = 0, the functiorf(¢*) has to be
denoted by,,and(V,,) represents its residual average over all thellly evaluated. The appendix presents the necessary intern
sites that the counterion accesses in times less than the inversdiaif steps leading to the differential equations describing tl
the quadrupolar splittings and/or linewidths over these sites. Theféect of the slowly fluctuating electric field gradients. Aparf
are often several independent processes at different time scéles the high-frequency contributiods(w,) andJ,(2w,), the
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relaxation rates are sensitive to the spectral densities at feggenvalues and eigenvectors of these matrices are known,
quencies 0, and A,. The (low) frequencies, and A, are time dependence of each of the basis vectors can be de
related to both the residual quadrupolar coupling and the R#ned. Due to the large size of the matrices in these different
field strength according to expression [A2] in the Appendiequations and to the fact that they are not very sparse, we h:
However, since throughout this work we neglect any lowshosen to find numerical solutions to the master equation,
frequency dispersion of the order af,,, we assume that described under Methods.

Jo(0) =~ Jo(Ay) = Jo(X,) = Jo, and Egs. [A5a] and [A5b] in

the Appendix reduce to the much simpler form 2. Modeling of the Biological Sample
. Biological systems are intrinsically complicated, with prop:
Ty(a) 3/, 0 0 0O 6/5), 0 O erties varying spatially and temporally. Following2j, we
Ty 0 0 0 O 0 0 model the sample as composed of a multitude of domain
d | Tau(s) 0 0 J O 0 0 0| within each domain, the motion of the ions is rapid, contrib
dt Ty(s) =~ O 0 0 Jo 0 0 0 uting to the spectral densitidg, J,, andJ, that determine the
Tsi(a) \/%/SJO 0O 0 0 2588, 00 conventional transverse relaxation rafgs and T,.. The ex
To(a) 0 0 0 O 0 Jo O change between domains is considered negligible on a tir
Tas(a) 0 0 0 O 0 0 scale exceeding the inverse line splittings and/or widths. A
A nuclei in the domain have the same relaxation times and, f
Tal(a) simplicity, we will assume that all of the domains are charac
T2 terized by the same relaxation times. In each domain, tt
TZl(S) 3/2-spin sodium nuclei experience a non-zero average EFG c
X TZZ(S) [14a] to the anisotropic interaction of these ions with macromole
T31(a) cules, and to the nonrandom distribution of these macromol
Tsz(a) cules within each domain (the fluctuating part induces rela
Tas(@) ation, see above). The residual EFGs are characterized by
principal valug(V,,) along the major axis (given by the domain
and orientation) and by the asymmetry parameter= ((V,) —
VNIV, Therefore, each domain will be characterized b
T1o 0 0 0 00 0 0 a static quadrupolar coupling, that depends on the orienta
T.4(s) 0 3/5, 0 0 0 \,@/530 00 tion _of the domain with respect to the main magnetic figld
T,,(a) 0 0 Jb 00 0 00 (defined by the angleg and ¢ below) (Eq. [15]) 23).
d|[Tna| |0 0 030 0 00
dt| T ~l]o o o000 0 O eQ .
.]_313((;) 0 [6/55, 0 0 0 2/5, 0 0 wg= 47 (V2)(3 cog0 — 1 + m sin%0 cos 2p) [15]
T5a(S) 0 0 0 0O 0 J O
Tas(s) 0 0 000 0 0 In single crystals and macroscopically oriented liquid crys
1o tals, all of the domains have the same residual EFGs and «
A parallel @4, 25. If the ions/molecules are constrained within
T1(s) . . . .
T,.(a) the domains and th_e domains are randomly oriented wi
f (a) respect tdB, (but having the same residual EFGs atf)¢ the
X %_If . [14b] NMR spectrum has the well-known “Pake powder” characte:
_1_313(05) istics 21, 26. For poorly ordered samples, such as biologice

tissue, the domains are characterized by a wide distribution
T32(S) (V,» and n values. As can be shown by simulations, the
Tas(s) resultantwq distribution in such samples can be approximate
as Gaussian2@). Consequently, we assumed that such

Therefore, the time dependence of the basis operators underd3gissian distribution (Eq. [16]) is valid for our sample,
static Hamiltonian and considering the relaxation effects is

given by the sum of Egs. [10], [13], and [14]. The two sets of

equations (the first set consisting on the sum of Egs. [10a], W(we) = i exfl —(wo — ©g) ¥ 207]. [16]
[13a], and [14a] and the second set by the sum of Egs. [10b], Ve o

[13b], and [14b]) evolve independently, but are coupled at a
change of RF phase by Egs. [7a—7b]. Each set of differentialHere, by @, we denote the average value of the stati
equations is linear, and the matrices are symmetric. Once theadrupolar interaction parameter, whitedenotes its second
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moment,o® = (wo)’. Generally, considering a distribution of EXPERIMENTS
static coupling constani®/(w,), the total NMR signal can be
expressed as an integral over all the signals corresponding t@\|| of the experiments described below were performed o
different values ofwq; a commercial Bruker DMX-300 spectrometer (79.33-MHz sa
dium resonance frequency). A NMR instrument was use
(instead of an imaging scanner) to overcome the softwar
Srotal = J W(wg) * S(wg, . . .)dwq. [17] hardware limitations that clinical systems impose on the shol
est pulse widths that can be used for a hard 90° RF ptid@Q
us). The extremely short RF pulses (L3) attainable with
METHODS such a NMR spectrometer also allowed the unbiased deterr
nation of the relaxation rates. Since we do not expect tt
As we have discussed above, the evolution of spin-3/2 nucteiaxation rates to vary significantly as the resonant frequen
under the influence of RF fields and static and fluctuatingecreases from 79.33 to 33.78 MHz (the frequency of a 3-
quadrupolar Hamiltonians is described by two sets of diffefmaging scanner), we benefited from performing our studies
ential equations. The first set is given by the sum of Egs. [10a]NMR spectrometer.
[13a], and [14a] and the second one by the sum of Egs. [10b],The sample was a small piece of bovine nasal cartilag
[13Db], and [14b]. These two sets evolve independently and dreshly received from the slaughterhouse (all of the exper
coupled at a change of RF phase by Egs. [7a] and [7b]. ments were conducted within 12 h of sacrificing the animal
The general matrix form of the two sets of equations is To ensure a homogeneous radiofrequency field across |
whole volume under study, the roughly cubic cartilage samp
dy (5 X 5 X 5 mm) was placed in the center of a 10-mm NMR
gt = MY [18] tube with the aid of small Teflon rods. The whole systen
(Teflon rods and sample) was immersed inOD and the
%(periments were performed without spinning the sample.
Two sets of experiments were performed. The first one wi
used to characterize the sample and the second one to de
mine the triple-quantum signal loss as the RF pulse width wi
increased. The first set of experiments consisted of a TQ filt
to determine the slow transverse relaxation time (equal to tl
relaxation time of the triple-quantum coheren,(28) and
of a double-quantum magic angle filter (DQ-MA) to determine
T, and the two parameters of the Gaussian distribution
quadrupolar coupling constants. We have assumed the sarr
In this equation,Y(0) represents the initial condition, andio be homogeneously anisotropic, such that the pool of isotr
expMt) is the conventional notation for a-dimensional pic ions outside the extreme narrowing limit present in th
square matrixif = 7 or 8 in our case), with null nondiagonalsample was negligible. Therefore, the only ions contributing t
elements and diagonal elements obtained from exponentiatigth the TQ-filtered and the DQ-MA signal were the ions ir
of the eigenvalues oM multiplied by time. For all of the anisotropic motion. Since in the presence of a non-zero averz
experiments in this work, the initial density operator WagFG the relations between transverse relaxation times a

proportional to the equilibrium stafé,, (spins aligned along spectral density functions ar@q, 27, 29
the main magnetic field). Mathematica (Wolfram Research,

Champaign, IL) was used to obtain the numerical eigenvalues

and eigenvectors of the evolution matrices, leading to the full 1

time dependence of the basis elements. During the train of Ty Jo(0) + Ji(wo) + Jo(2w0) [20a]
pulses, the RF strength was adjusted properly in time between

0 (RF off) and a value given by the ratio flip angle/pulse

duration (RF on). The signal at the end of the train of REnd

pulses, assuming quadrature detection,( + il ,(t), being

therefore proportional to the differende;(a) — T,,(s). Con

sequently, the two sets of differential equations were solved for 1

values of static quadrupolar interaction constants in the range Toe = Ji(wo) + Jo(209), [20D]
[wo — 30, wg + 30], and the corresponding signals were

added together with the corresponding Gaussian weight func-

tion in order to obtain the total NMR signal. and assuming no high-frequency dispersidn€ J,), the two

HereY represents a complex vector of length 7 (first set) or
(second set), ant¥l a 7 X 7, 8 X 8, respectively, symmetric
complex matrix. If we denote b, the diagonal form of the
matrix M (obtained from the eigenvalues bf), and byS the
similarity transform (obtained from the eigenvectors My,
thenMy = S™* MS, and the solution of Eq. [18] is

Y(t) = S exp(M4)S1Y(0). [19]
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relaxation timesT ,, and T, completely determine the relevantFor each of the seven sets of data, 2400 scans were ad

spectral density functions. (4.4-min total acquisition time), and each scan consisted of 10
points (10us dwell time). Provided that the RF pulse widths ar
1. Determination of Sample Characteristics short compared to the transverse relaxation times, the signal at

The triple-quantum relaxation rate was measured with tﬁgd of the DQ-MA filter can be expressed as)(

aid of a simple triple-quantum filtration experiment: . .
ple friple-d P S(wo, 7, 1) = sin(wgr)siN(wgt)e e, [23]

™ (D) 7/2 (D) 7/2 By integrating Eq. [23] over all of the possibig, values, with
2 m the Gaussian weight function (Eq. [16]), Eq. [23] transforms t
6/2 5/2 S(@g, 7 1) = {e" 7 2codag(t — 7)]

v
—(®+90) —— w(d + 90) ———— 292
2 — e” T 2cod ag(t + 7)1}

X e*t/Tzfe*T/Tzf. [24]

A nonlinear fit of the DQ-MA data to Eq. [24], using the
Levenberg—Marquardt algorithm, was used for every value

The second 180° pulse is not standard in a TQ-filtered stg—e preparation time to yield values fak, o, andTs.
quence, but was needed in order to refocus the effects &gthe . . . .
inhomogeneity as the evolution time was increas#@.(The 2. TQ-Filtered Signal Decay with the RF Pulse Widths
phase®, of the RF pulses was stepped through the values 30°,The TQ filter used for studying the effect RF pulse width ol
90°, 150°,—150°,—90°, —30°, while the receiver’s phase wassignal loss consisted of a series three RF pulses followed
toggled between the values 0° and 180° for consecutive scatfsta acquisition. This filter was chosen because it produced
The preparation timer, was kept constant-(= 2.4 ms), while bestoverall signal-to-noise in our clinical imaging experiments
the evolution time of the triple-quantum coherenég,was (13).

varied stepwise (12 steps, withe [0.4 ms, 12 ms]), and the

™ .
> (0) — acquwe] . [2]

strength of the TQ-filtered signal was monitored. The pulse - T &

width of the 90° pulses was 12.ds, and the signals were  _ () —— 5 (® +90) —— 5 (0) — acquire
placed on resonance. For each value of the evolution time, 360

signals were added together, with data points collected every [25]

16 us (4096 total number of data points), leading to a 43-s total
experiment time. The TQ-filtered signals were integrated in order to obtain a triple-quantum signal, the phdsef the
time (the receiver was phased such that the entire signal wagses was stepped through the values 30°, 90°, 15050°,
present only on one channel), and a monoexponential fit wa90°, —30°, and consequent signals were added/subtract
consequently performed to the 12 data points to yield thegether, corresponding to an alternation of the phase of t
triple-quantum coherence relaxation time. receiver between 0° and 180°. The preparation timeas
A DQ-MA filter was used to determine the fast relaxation timgefined from the end of the first pulse up to the beginning of tr
of the sample, along with the two parameters of the Gaussigscond pulse and was kept at 2.4 ms for all of the experimen
distribution,w, ande. It consisted of the sequence of RF pulseThe evolution times was defined from the end of the seconc
pulse up to the beginning of the third pulse and had the vall
- T2 T2 0.02 ms throughout the experiments. The power levels for 9
= (®) —— 7(P) —— flip angle were previously calibrated for each pulse width (nin
2 values uniformly distributed in the range [0.1-0.9 ms]) by
maximizing the single-quantum signal. The acquisition paran

0 _ eters for each pulse width experiment were: 600 fids add
54.7(®) —— 54.7(0) — (acquirg.  [22] yqether, 4096 points/fid, 16s dwell time, 60-s total experi-
ment time.
The phase®, of the pulses was stepped through the values 0°,
90°, 180°, 270°, while the phase of the receiver was alternated RESULTS AND DISCUSSION

between 0° and 180°. The evolution tindewas kept very short
(40 us), and the preparation time, was varied in seven steps Figure 1 presents the time integrals of the 12 TQ-filtere
between 0.5 and 4 ms. The typical 90° pulse width was 8.4 signals (collected with different values of the evolution time
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1.0 —

TQ Signal Intensity (a.u.)
TQ Signal Intensity (a.u.)

o
o

0.0 2.5 5.0 7.5 10.0 12.5 0.0 10.0 20.0 30.0 40.0 50.0 60.0
Evolution time (ms) Aquisition time (ms)

FIG. 1. Triple-quantum signal intensity as a function of evolution time. FIG. 3. Theoretical TQ signal intensity as a function of the acquisitior
Diamonds represent experimental points (time integrals of the TQ signals) aide. The three curves correspond to RF pulse widths of 0.1 ms (solid), 0.5 1
the line represents the corresponding monoexponential fit. The result of thgdidtted), and 0.9 ms (dashed).
is the relaxation rate of the triple-quantum coherefigg,= 9.92 ms.

as a function of the evolution time. Because the RF pulses és(ranooth lines). Using the DQ-MA data sets, the paramete

extremely narrow, the TQ-filtered signal strength is monoeX: aracterizing the sample were found to be
ponentially decaying with the evolution time, and the decay
time represents the relaxation time of the triple-quantum co-
herence. The diamonds represent the experimental data, while
the line is the monoexponential fit. The relaxation time of the
triple-quantum coherence obtained, equal to the slow trans-
verse relaxation time, i$;, = 9.92 ms.

Figure 2 shows four of the seven experimental data sets
collected with a double-quantum magic angle filter using prep- From the two transverse relaxation rafég,andT;, the two
aration times of 0.5 ms (circles), 1.4 ms (up triangles), 3 nfglevant density functiond, andJ, can be determined,J¢ =
(diamonds), and 4 ms (down triangles). Also presented in thd{2T2) andJo = 1/Tx — 2J,), using Egs. [20a] and [20b].

same figure are the corresponding theoretical fits (Eq. [24$51e two values obtained (considering the average value f
o) are, respectively, 0.0504 and 0.185 kHz fgrand J,.

The analytic expressions used for the DQ-MA signal (Eq

wq = 0 rad/s,
o= 736.31+ 53.85rad/s,

T, = 3.50+ 0.93 ms. [26]

1.0 [23] and [24]) were deduced assuming a strong RF fields¢
- we) and slow exchange between different domains with respe
g 0.8 to the inverse of the splitting. Since we have considered a sta
z model (i.e., there is no exchange between the domains), t
£ 06 | exchange rate is zero and satisfies the condition for observi
g the DQF-MA signal.
E] The values of), andJ, determined above allowed for the
& 04 [ two sets of differential equations (Eq. [16] Eq. [13] + Eq.
§ [14]) to be solved numerically as described under Method
& 02 Figure 3 presents three of these nine simulated TQ-filtere
A signals (Eqg. [25]) for pulse widths of 0.1 ms (solid line), 0.5 m:
0.0 = (dotted line), and 0.9 ms (dashed line). For ensuing data se

0.0 20 40 60 8.0 10.0 the strength of the RF pulses was decreased and the pt
Aquisition time (ms) widths increased, such that the product pulse width times pul
FIG.2. DQ-MA signal intensity as a function of the acquisition time. Thestrength remained constant 4/2). For each pulse width in the
four sets of points shown correspond to four different values of the preparatimnge [0_1_0_9 ms] (range relevant for clinical imaging appli
time: 7 = 0.5 ms (circles), 1.4 ms (up triangles), 3 ms (diamonds), and 4 resdtions) the static quadrupolar COUp|iI’lg parameiey, was

(down triangles). Along with the experimental data, the theoretical fits (EQ._ . h
[24]) are presented (smooth curves). The seven fits performed (of which 0§|9r|8d between—[ZZOO rad/s, 2200 rad/s] In steps of 2 rad/s

four are shown) yield the following sample characteristics:= 3.5 + 0.93 and the resultir}g TQ-filtered signals were stored ind_eF’e‘
ms, @, = 0 rad/s,c = 736.31+ 53.85 rad/s. dently. Those signals were subsequently integrated with t
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L0 - ‘ v ‘ retical predictions. Since the triple-quantum signal is extreme
weak, and because variations in the triple-quantum signal fro
human brain, cartilage, breast, etc., are suggested as be
possibly connected to pathological conditions, an overall ir
crease of 15% in the signal strength can be essential in p
ceiving important image details. However, this signal increas
as the widths of the hard RF pulses are decreased is tigh
connected to the properties of the tissue under study. It
known that the existence of the static quadrupolar interactic
parameter influences the relaxation characteristics of the obj
under study. For example, it is customary to fit the TQ-filtere
signal to a difference of two exponentials, with the results c
the fits beingT . and Ty,. The relaxation timeT ,;. deter
mines the signal behavior at small times, with,, governing
FIG. 4. Experimental TQ signal intensity as a function of acquisition imethe signal decay at long times. For narrow RF pulses, the ex:
The three curves shown correspond to RF pulse widths of 0.1 ms (top), OTPQ-fiItered signal dependence on the conventional transvel
ms (middle), and 0.9 ms (bottom). relaxation rates, including the quadrupolar coupling consta
wo, IS (22)
corresponding Gaussian weight function to yield a single,
weighted TQ-filtered signal for each pulse width. TQ(t) = e "™cogwet) — e V™, [27]
Figure 4 presents the magnitude for three of the nine exper-

imental TQ-filtered signals collected with pulse widths of 0.1 Therefore, the short-time 5igna| behavior is modulated &
ms (top), 0.51 ms (middle), and 0.9 ms (bottom) as describggd and the distribution ofs,’s, and the long-time behavior is
in the previous section. As can be noticed from Figs. 3 and described byl ,.. As T and T, describe the same long-time
the simulated TQ-filtered signals and the TQ-filtered signadggnal behavior, we expect these two values not to be signi
acquired experimentally are very similar. Most importantly, theantly different. However, since the, and T, dependence are
theoretical simulations are not fits of the TQ'ﬁltered eXperi'ep|aced by a 5ing|e parametéfzr(se) in the Simp|er biexpo
mental data, but were generated using the relaxation the@ghtial fit, the T, and T, values will most probably be
presented before by using only the sample characterislics (different. For human cartilag€,.. values are measured to be
J,, o) as input. However, due to the fact that Fig. 4 displays thg the submillisecond range8{, 32, while true values off

magnitude of the experimental TQ-filtered signals, there isag@e shown to be consistently high&t9(. The human brain
baseline which is not accounted for in the theoretical simula-

tions (which are done in the high-temperature approximation,
Flg 3) 1.0 ——
The accuracy of the model presented above to predict the
TQ-filtered signal loss as the pulse width of the 90° RF
pulses is increased can also be noticed when displaying the
time integral of the TQ-filtered signals as a function of RF
pulse width (Fig. 5). Here, the circles represent the time
integrals of the experimental TQ-filtered signals, while the
points generated by integrating the simulated signals were
connected through a line. By repeating each experiment five
times with the same acquisition parameters, the time integral
of the signal varies on the order of 2%, so we estimate that
the error in the experimental data presented in Fig. 5 is on 05 ‘ ‘ }
the order of 2%. The set of data points and the theoretical To 200 400 600 800 1000
curve are normalized such that they have equal value at the Pulse Width (microseconds)
0.5-ms data point. Our model indicates that a 15% increaseg. 5. TQ signal time integral as a function of RF pulse widths. Circles
in the sodium TQ-filtered signal strength is obtained as thepresent experimental data and the smooth curve the theoretical predicti
pulse width of the hard 90° pulses are decreased from 500F@ nine RF pulse widths equally distributed in the interval [0.1-0.9 ms], T(

100 ps This prediction is in good agreement with th ignals were obtained by numerically finding the solution of the sum Egs. [1(
. . . 13], and [14] as described in the text. Each simulated TQ signal was con:s
experimental results shown in Fig. 5.

. . . . .quently integrated in time, generating a single theoretical point. The nir
The very simple domf""n model for the sodium ions ifheoretical points (joined by a line) and the experimental points are normaliz
cartilage produces experimental results very close to the theaeh as they have equal value at the 0.5-ms time point.

TQ Signal Intensity (a.u.)

L L ik A BRI W A
0.0 10.0 20.0 30.0 40.0 50.0
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60.0
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yields values fofT ,; in the range 2—4 ms. Since the brain is TABLE 1

known for exhibiting quadrupolar splittings, to83), we ex-  Coefficients Giving the Exact Time Dependence of the Irreduc-
pect the true values of the fast relaxation times to be highiéle Operator T, Due to the Presence of the Static Hamiltonian HS
than theT . values, leading to smaller relaxation effects andEd. [A3])

smaller TQ-filtered signal increases with decreasing RF pulse
widths. As a final conclusion, the TQ-filtered signal loss due tq,(t)
relaxation effects during the application of RF pulses can be
predicted using the theory presented above. This signal lossiig) ©o* @iwg+ 4wl 3wl <°°5"1t COSM)

3wy (cos/\lt . coshat A2+ )\§>
25 \ A% A3 AiAZ

2,2 +— |\ —= 2
expected to be more significant for tissues characterized by A1Az 2 Al A2
faster relaxation rates (such as breast and cartilage) and legy  i\3 o (Si” Mt sin Mt)
important for slower relaxing tissues (like brain). However, for 2 Ay Az
the predictions of the theory to be accurate, the “true” relag;z(t) V3o {w <COSM B COSM) " (cos)nt N cosm)
ation times have to be previously measured, and also the 2 e\ A A3 \ag A%
distribution of static quadrupolar interaction constants has to be o ,
modeled and experimentally characterized for the tissue under T (0g = 4“’1)]
study. anl) N [ . (cos/\lt . cos/\2t> Y (cosAlt - cos/\2t>
210 [ 77\ Ad A3 ARy AS

CONCLUSIONS
4wg
) . - . . -3 (05— wf)]
We derived the equations describing the evolution of spins A1A
3/2 in the presence of RF and both static and fluctuatinagi(t) N (sin)\lt_sin Azt>

quadrupolar interactions. A direct application of this theory 2 Ay Az
was the study of signal loss in triple-quantum sodium MRY,;y _ 31 (Cosjlt _cosht  Ai- ﬁ)
during RF excitation. The predictions from this theory were 2\2\ A Az Aidz

tested on a small piece of bovine nasal cartilage; this sample

was modeled as composed of multiple domains, characterized

by Gaussian-distributed static quadrupolar interaction con-

stants. An increase of 15% in the TQ-filtered signal strength as

the hard 90° RF pulse width was decreased from 500 tquK00 1 2w0) »
was predicted and demonstrated experimentally. N (5 + w1> Ta(a)

APPENDIX 2 A1 . R
* 3 uTl Tso(a) + Tas(a)

The exact time dependence of tihe, evolution due to the
presence of the static quadrupolar Hamiltonidiy can be _ _ |fwqa4 B % EE A
deduced by diagonalizing the matrix in Eq. [10a]. The seven't2 Ass= 5 w, Tu(@ + V2T > 43 o, Ti(S)
eigenvalues and eigenvectors are, respectively, 5

(()Q A
\g <1 - wl> T2o(s)

+
5 wi ~ 3 Wy A ~
0 Ar= 45 2 Tu(@ + 15 = Tals) + Tsy(a) 1 200) -
Q Q + 15 (5 - w) Tai(a)
0 A (Swi \F> T ,(a) ' l
2= 2 \/3) ' a 2 Ay . ~
V6o - [ Tola) + Tula). (A1)
3 0)1
+\F“’1? (8" + Tala)
—— Ty(s a
2 wq 2 o The two symbolsy, and A, are

[OX N A
0 As= \f@ on Ti(a) + Ty
Q A = V/“’é + 2w,00 + 4of

2 wo 4~ N 2 Ay .
Ty A= =2 Tu(a) — \/5 Ty + = T2u(s) o= Jwd — 20,0 + 43, [A2]
5 W, 3 wq Aadl®)

B E 14 wq %9 With the eigenvalues and eigenvectors displayed before, t
3 22 evolution ofT,, under the static Hamiltonian is summarized a
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TABLE 2
Coefficients Multiplying the Spin Operators in Eq. [Ada] in Terms of the a; Coefficients Displayed in Table 1
o* by b2y b2, b3,
B 3 1 1 3 1
Tu(a) 5 80 ?\f Az ﬁ asy ﬁ Az + \/% Agg ?\/7 0+ = A ﬁ 8y
Tao gau g as; —az —az - as; —as
Tax(s) 0 a2 0 ];E a;;+ \/% s+ \/E 8a3
T22(9) —g a11+$ ag+ \/% ass 0 axo - g an+ 5 an+t % ags 0
- \6 3 3 1 1 2 3
Tai(a) 5 s ﬁ Az, - \/% az 2 a; + 75 Q33 5 Ay az - \/% az
-’l\—az(a) 0 - % a;, + % as; + % asz 0 azo
2 3 1 3 1 1
Tas(@) - \/;) ay, - ﬁ as; 1021~ % as - ﬁ a
eiH%t-”rzoe*iH%t = all(t):rll(a) + azo(t)-’l\—zo + aZl(t)'i—zl(S) for o* = {T11(a), Tz, T2u(8), T22(S), T2(d), Tax(d), Tas(a)}
A A and as
+ ax(t) Too(S) + asi(t) Tay(a)
+ ag(t) Ta(@) + ass(t) Tas(a). [A3]

The coefficientsy; are tabulated in Table TThe spin operator

[:rzo' [e_ngﬁ—zoengTa o*]]= 011(7)?11(5) + 021(7):'—21(3-)

double commutator fom = 0 can consequently be expressed as

[1—20: [efngT:rzoeiHéT: o*]]= bll(T)-Arll(a)"' b21(7)£r21(3)

+ bzz(T)?zz(S) + b31(7)'T'31(a)
+ bsz(T)?sz(a)

[Ada]

+ C22(7):|'22(a) + C31(7):|'31(S)

+ Cao(T) -Arsz( s) [Adb]

]iOI‘ o* = {:rw: ?11(5): -’I\—Zl(a)l :rzz(a)- :rso, ?31(5): ?32(3),
Tsx(9)}. The coefficientd; andc; are presented in Tablesad 3,
respectively, in terms of the above tabulagg®. For calculating

TABLE 3

Coefficients Multiplying the Spin Operators in Eq. [A4b] in Terms of the a; Coefficients Displayed in Table 1

o* Cu1 Co1 Ca2 Ca1 Ca2
5 3 3 2 2 2 2
Tu B B2 2 G -2,

5 5 5 \5 5 \/5
ES 3 3 1 1 |3 6 2 1
Tu(S) 5 8y — \[{: ay % as; ﬁ 31 — 10 e ?\/7 Ay \’5 ay, % Ay
—Arzl(a) 0 Pl 0 0 0
—Arzz(a) 0 0 Ay 0 0
- 2.3 2.3 2.2 1 2.2 1
Tao - % Az g ag 5 CEN f a3z - % a1 NG Az,
A 6 3 3 1 1 2 3 3
A

Tau(s) 5 A0 + 5 \,E ) HR) asp - ﬁ ay — NG Q33 5 820 + %» Ay ~ \102
Tas) 0 0 0 0 Ay
3 3 1 3 1 1 1

a(S) 10 222 - ﬁ a3z BT E as; - ﬁ ay - ﬁ Ay
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the elements in these tables, the equalityas; — \,E A — \/@ the slowly fluctuating electric field gradients & 0 term) can be
as; = 0, easily deducible from Table 1, was also used.
With the aid of the tabulatelo, andc; coefficients, the effect of The coefficientsA throughJ are linear combinations of the

and

1\_11( a)

£,

Tou(s)
d -Arzz(s)
:rsl( a)
-Arsz(a)
-Arss(a)

3100 0 O —|15/1E 6/10D O 0| [Ty(a)
3,5/10A 0 O y3/2B \30/10A 0 Ol Ty
0 0 3/G 0 0 31F 0|f Touls)
— —|3/15/10F 0 © 3126 3\10/10F 0 0| Tuls) [A5a]
3/6/20 0 0 3,10/200  3/10 0 0f| Tau(a)
0 0 3/F 0 0 312G 0f| Taa)
3,/10/28 0 0O J6/4a 15718 0 0 |Ta(a)
0 0 J15/10A 0 0 0 J15/58 0| [ Ty
0 3/10C 0  -,15/10A 0 6/10C 0 0| Tu(®)
0 0 312G 0 0o 0 0 o|| To(@)
0 0 0 3G 0 0 0 0|| T.x(a)
=7lo o A 0 0 0 -/15108 O T, | AP
0 36/20H 0 3,10/20a 0 3/1CH 0 0| Tauls)
0 0 0 0 0 0 3B 0f| Tas)
0 3,10/28 0 J6/4A 0 |15/108 0 0 | Tasls)
TABLE 4

Coefficients Appearing in Egs. [A5a] and [A5b] in Terms of the
Spectral Density Functions Jo(A;), Jo(A,), and J,(0)

Jo(A4) Jo(A2) Jo(0)
A wl(wQ + wy) wl(wQ — wy) _ M
% A2 AAS
L _eeete)  we-e) _20fwd-dwd
A2 A3 AIAS
c 3 w1(wg — 20,) w1(wg + 20,) w
A2 A3 AN
o wi(wg + 4w;) B w(wg — 4wy) M
A2 A5 Y
g @ulogt 4wy w1(wg — 4wy _ 2w0q(wg — 40
A2 Y NS
w? w? 4oiwg
F -2 2 -2z
Al A ATAS
G o o e
A% A2 3 A2N2
H wl(a)Q-iz- 3w;) B w1(wQ—2 3w,) E [2(040 + Swéwl - 4a)i:|
AS A2 3 Y
| _ wl(sz_ w1) ‘*’1(‘”0: @) 2 [ 204 — wioi+ 2001
A2 A 3 [ A2AZ
3 wi(wo - wy) wl(wQ + ;) _ M
A2 A3 AIAS

incorporated into the following set of differential equations:

spectral density functiond,(A,), Jo(A,), andJy(0). The ce
efficients of these linear combinations are displayed in Table
Accordingly, the relaxation rates are sensitive to the spectr
densities at low frequencies, A,, and 0. Two limiting situa
tions are of special interest. In the absence of a low-frequen
dispersion, i.e., whedy(0) =~ Jo(A1) = Jo(A2) = Jo, the wq
and w, dependencies in the rates Eqgs. [A5a] and [A5b] vanis
and the relaxation matrices take the simple forms of Egs. [14
and [14b]. Furthermore, in the limié, = 0, the time evolution
can be solved in analytical forn27). In the limit o, = 0, but
irrespective of a low-frequency dispersion, the rates agree wi
earlier results obtained in the doubly rotating tilted frame. |
particular, it was shown that due to relaxation under (pulse
RF triple-quantum coherences are excited, without a ha
coherence transfer puls84-36.
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