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We have derived approximate analytic solutions to the master
equation describing the evolution of the spin I = 3/2 density op-
erator in the presence of a radio-frequency (RF) field and both
static and fluctuating quadrupolar interactions. Spectra resulting
from Fourier transformation of the evolutions of the on-resonance
spin-locked magnetization into the various coherences display two
satellite pairs and, in some cases, a central line. The central line
is generally trimodal, consisting of a narrow component related to
a slowly relaxing mode and two broad components pertaining to
two faster relaxing modes. The rates of the fast modes are sensitive
to slow molecular motion. Neither the amplitude nor the width of
the narrow component is affected by the magnitude of the static
coupling, whereas the corresponding features of the broad com-
ponents depend in a rather complicated manner on the spin-lock
field strength and static quadrupolar interaction. Under certain ex-
perimental conditions, the dependencies of the amplitudes on the
dynamics are seen to vanish and the relaxation rates reduce to rela-
tively simple expressions. One of the promising emerging features is
the fact that the evolutions into the selectively detected quadrupolar
spin polarization order and the rank-two double-quantum coher-
ence do not exhibit a slowly relaxing mode and are particularly sen-
sitive to slow molecular motion. Furthermore, these coherences can
only be excited in the presence of a static coupling and this makes
it possible to discern nuclei in anisotropic from those in isotropic
environment. The feasibility of the spin-lock pulse sequences with
limited RF power and a nonvanishing average electric field gradient
has been demonstrated through experiments on sodium in a dense
lyotropic DNA liquid crystal. C° 2001 Academic Press

Key Words: nuclear magnetic relaxation; quadrupolar nuclei;
spin-locking; multiple-quantum spectroscopy; sodium imaging,
DNA, lyotropic liquid crystal.

t
o

sed
lei
lar
ut
ore
dio
ed

c-
r of

t,
adi-
nd

m-
in-
ual,
nd
, it
the
nce

ur-
of

of

ing
dy-

atic
ere
the
ec-
INTRODUCTION

Quadrupolar spin probes are becoming increasingly impor
in a wide range of applications from the investigation of soft c
densed matter such as (bio)polymers in the liquid state (1–4),
through biological fluids (5), to the diagnosis of pathology
humansvia MRI (6). Another application is the study of surfac
properties of porous materials with xenon-131 (7). Among those
291090-7807/01 $35.00
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probes, the naturally occurring spin quantum number 3/2 nuclei
7Li, 23Na,39K, 87Rb,35Cl, 81Br, and131Xe constitute an impor-
tant class, for which the spin dynamics can be solved in clo
analytical form (8–10). The magnetic relaxation of these nuc
provides a mechanism to extract information about molecu
motions (11). Longitudinal relaxation gives information abo
relatively fast motions, whereas slow dynamics is probed m
efficiently by applying a lock through an on-resonance ra
frequency (RF) field. In previous works, one of us has analyz
the relaxation of a system of spinI = 3/2 under (pulsed) spin
locking, which allows to sample the spectral density of the flu
tuating quadrupolar interactions at a frequency of the orde
the RF field strength (12–14). The formerly derived formalism
is strictly valid however for nuclei in an isotropic environmen
where the nuclei experience a zero average electric field gr
ent. In many important systems, including biological tissue a
lyotropic liquid crystals, the quadrupolar interaction is not co
pletely averaged by molecular motion in times less than the
verse Larmor frequency and the NMR spectra display a resid
possibly hidden, quadrupolar splitting. Accordingly, to exte
the range of applications to this important class of materials
is necessary to include the static quadrupolar Hamiltonian in
calculation of the destiny of the density operator in the prese
of a RF field.

A second motivation to consider the effects of relaxation d
ing RF excitation originates from the increasing importance
sodium MRI in whole body scanners (15). In particular, the use
of triple-quantum filtered images over a relatively large field
view (>15 cm) requires rather long (π/2) RF pulses on the or-
der of 0.5 ms. In previous work, the unwanted signal loss dur
such long RF pulses was predicted with a model for the
namics of spinI = 3/2 in biological media (16). Following the
formalism for spinI = 1 nuclei (17), we have derived the dif-
ferential equations describing the evolution of the spinI = 3/2
density operator in the presence of a RF field and both st
and fluctuating quadrupolar interactions. These equations w
subsequently numerically integrated to successfully predict
experimental 15% signal loss in the triple-quantum filtered sp
tra of a piece of bovine nasal cartilage when the (π/2) RF pulse
8



F

e
i
d
e

c
e

f
c

o

o

l
w

r

i

s

e

c

o

t
e

-
q
e

in

-
3].

-
-

he

tic

an
DYNAMICS O

width was increased from 0.1 to 0.5 ms (the flip-angle was k
constant with a concurrent decrease in RF power). Although
differential equations are readily amenable by numeric m
ods, approximate analytic solutions under certain simplify
assumptions might be convenient for a general understan
of the spin dynamics. Apart from their relevance in the cont
of extracting the spectral densities of the fluctuating quadru
lar interaction, these approximate solutions might also fa
tate the optimization of the MR imaging techniques to sel
tively detect ions involved in slow motion and/or in anisotrop
environment.

A third possible use of applying a RF field during more e
tended time-intervals comes from the need to discern dif
ent pools (e.g., intra- versus extra-cellular) of ions in biologi
systems. For instance, it has been suggested that certain p
logic conditions (such as cartilage degenerative diseases) c
late well to changes in the spectra of sodium ions involved
slow motion (18). Several methods have been proposed to
tect sodium ions in an anisotropic environment. Among tho
the most common methods are the double-quantum magic
gle (DQ-MA) filter and the Jeener–Broekaert sequence (5, 19,
20). We will show here that quadrupolar spin polarization
der, as well as rank-two double-quantum coherences are
cited in the presence of a RF field, provided the amplitu
of the spin lock field is on the same order of magnitu
as the residual quadrupolar coupling. Accordingly, the se
tive detection of the quadrupolar polarization or the rank-t
double-quantum coherence after applying a RF lock is p
posed to be an alternative MRI filtering technique for mo
itoring ordered ions in, e.g., human skeletal muscle or b
in vivo (21).

The outline of this paper is as follows. First, we w
reiterate the necessary differential equations describing
time-evolution of the density operator. These equations are
sequently solved without relaxation effects to provide for a r
erence in the perturbation analysis of the lineshapes. Aft
discussion of the fast relaxing modes, which are most se
tive to slow molecular motion, we will present some practi
considerations how to selectively detect the various coheren
Finally, the feasibility of the various pulse sequences is dem
strated with some experiments on sodium in a dense lyotr
DNA liquid crystal.

DIFFERENTIAL EQUATIONS

The differential equations describing the dynamics of
spin I = 3/2 density operator in the simultaneous presenc
a static quadrupolar coupling and a RF field have been
rived and reported in previous work (16). For ease of refer
ence, we sketch the derivation and reiterate the pertinent e
tions necessary for an analysis of the spin-lock experim

All calculations are done in the Larmor frequency-rotatin
frame, indicated by an asterisk. The time-evolution of the de
sity operator under a static HamiltonianH∗S and a fluctuating
SPIN I = 3/2 299
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quadrupolar interaction HamiltonianH∗QF(t) is given by the mas-
ter equation (22)

dσ ∗

dt
= −i [H∗S, σ

∗] + f (σ ∗) [1]

with the Redfield relaxation superoperator

f (σ ∗) = −
∞∫

0

〈[
H∗QF(t),

[
e−i H ∗Sτ H∗QF(t − τ )ei H ∗Sτ, σ ∗(t)

]]〉
dτ.

[2]

Note the presence of the static HamiltonianH∗S in the relaxation
contribution, which cannot be neglected ifH∗S does not commute
with H∗QF(t).

We express the density operator and the Hamiltonians
terms of irreducible tensor operators (23). Symmetric and anti-
symmetric combinations are defined as

Tlm(s) = 1/
√

2(Tl−m + Tlm)
[3]

Tlm(a) = 1/
√

2(Tl−m − Tlm).

Orthonormal tensor operatorŝTlm are also introduced, which
fulfill the orthogonality relationshipTr{T̂ lmT̂ †l ′m′ } = δll ′δmm′ with
T̂ †lm= (−1)mT̂l−m. The unit tensors are related to theirTlm coun-
terparts according tôTlm=al Tlm. For spinI = 3/2, the coeffi-
cientsal have the valuesa0= 1/2, a1= 1/

√
5, a2= 1/2

√
2/3,

and a3= 1/3
√

2. Symmetric and anti-symmetric combina
tions of the unit tensors are defined analogously to Eq. [
The density operator is expanded in 16 basis operators:T̂00

(the identity), T̂10 (longitudinal magnetization),̂T11(a) and
T̂11(s) (proportional to thex- and y-magnetization, respec-
tively), T̂20 (quadrupolar spin polarization),̂T21(s) andT̂21(a)
(rank-two single-quantum coherences),T̂22(s) and T̂22(a)
(rank-two double-quantum coherences),T̂30 (octopolar spin
polarization),T̂31(s) andT̂31(a) (rank-three single-quantum co
herences),̂T32(s) and T̂32(a) (rank-three double-quantum co
herences) and̂T33(s) and T̂33(a) (rank-three triple-quantum
coherences).

With respect to the Larmor frequency-rotating frame, t
Zeeman Hamiltonian (Hz=ω0Iz=ω0T10) vanishes. The time-
independent Hamiltonian is then given by the sum of the sta
quadrupolar and RF contributions:

H∗S= H∗QS+ H∗1 . [4]

The static quadrupolar Hamiltonian commutes with the Zeem
Hamiltonian and takes the form
n-
H∗QS=

1

6
ωQ
[
3I 2

z − I (I + 1)
] = ωQT̂20, [5]
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whereωQ denotes the residual quadrupolar interaction par
eter. The latter coupling parameter represents the part o
quadrupolar interaction that persists after motional averag
and is not to be confused with the root mean-square-avera
the fluctuating part. With the RF field applied exactly on r
onance along thex axis with field strengthω1 = −γ B1, the
corresponding Hamiltonian reads

H∗1 = ω1Ix =
√

5ω1T̂11(a). [6]

The zero-average fluctuating quadrupolar interaction can be
pressed as

H ∗QF(t) = CQ

2∑
m=−2

(−1)mT2meimω0t [F2−m(t)− 〈F2−m〉]. [7]

Here, CQ =
√

6eQ/(2I (2I − 1)h-) = eQ/(h-
√

6) (Q is the
quadrupolar moment of the nucleus, the other symbols h
their usual meaning), the electric field gradient tensor com
nents,F2m, are defined elsewhere (24), and〈F2m〉 represents
their average value.

With the commutation relations (23) and neglecting relax

ation, Eq. [1] reduces to two sets of coupled differential equa- ±iλ = ±i

(
ω + 1

/
2 ω2 + 4ω2− λ λ )
tions. The first is

d

dt



T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


=



0 0 i
√

3/5ωQ 0 0 0 0

0 0 −i
√

3ω1 0 0 0 0

i
√

3/5ωQ −i
√

3ω1 0 −iω1 i
√

2/5ωQ 0 0

0 0 −iω1 0 0 iωQ 0

0 0 i
√

2/5ωQ 0 0 −i
√

5/2ω1 0

0 0 0 iωQ −i
√

5/2ω1 0 −i
√

3/2ω1

0 0 0 0 0 −i
√

3/2ω1 0





T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


[8]

and for the second set one has

d

dt



T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

ˆ


=



0 −iω1 0 0 0 0 0 0

−iω1 0 i
√

3/5ωQ 0 0 0 0 0

0 i
√

3/5ωQ 0 −iω1 0 i
√

2/5ωQ 0 0

0 0 −iω1 0 0 0 iωQ 0

0 0 0 0 0 −i
√

6ω1 0 0

0 0 i
√

2/5ωQ 0 −i
√

6ω1 0 −i
√

5/2ω1 0
√ √





T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

ˆ


. [9]

4 1 Q 1 1 2
 T32(s)

T̂33(s)

  0 0 0 iωQ

0 0 0 0
REL ET AL.
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The matrices in Eqs. [8] and [9] can be diagonalized an
the differential equations can subsequently be integrated
analytical form. The resulting time-dependencies of the bas
operators have been set out by Campolietiet al.(25). The matrix
in Eq. [8] has a three-dimensional null space spanned by thr
eigenvectors with eigenvalues being equal to zero. Furthermo
the remaining eigenvalues

±iλ1 = ±i
√
ω2

Q + 2ω1ωQ + 4ω2
1

[10]
±iλ2 = ±i

√
ω2

Q − 2ω1ωQ + 4ω2
1

are imaginary and correspond to two sets of resonance frequ
cies, each set with equal magnitude but opposite signs. Acco
ingly, spectra resulting from Fourier transformation of the tim
dependencies of the operators in Eq. [8] display a central res
nance and two satellite pairs related to the zero and imagina
eigenvalues, respectively (as will be shown below, the spec
pertaining to thêT21(s) andT̂32(a) coherences show two satel-
lite pairs only and no central line). The matrix in Eq. [9] has
eight imaginary eigenvalues

±iλ3 = ±i
(
ω1+ 1

/√
2
√
ω2

Q + 4ω2
1 + λ1λ2

)
√ √
0 −i 5/2ω1 0 −i 3/2ω1

0 0 −i
√

3/2ω1 0

 T32(s)

T̂33(s)


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±iλ5 = ±i
(
ω1− 1

/√
2
√
ω2

Q + 4ω2
1 + λ1λ2

)
±iλ6 = ±i

(
ω1− 1

/√
2
√
ω2

Q + 4ω2
1 − λ1λ2

)
[11]
and the corresponding spectra show 4 satellite pairs and no e

n

tral resonance.

d

dt



T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


= −



3/10D + J1 + 2/5J2 0 0 −√15/10E
√

6/10D −√6/5J2 0 0

3
√

5/10A 2J1 + 2J2 0
√

3/2B
√

30/10A 0 0

0 0 3/2G+ J1 + 2J2 0 0 3/2F 0

3
√

15/10F 0 0 3/2G+ 2J1 + J2 3
√

10/10F 0 0

3
√

6/20I −√6/5J2 0 0 3
√

10/20J 3/10I + J1 + 3/5J2 0 0

0 0 3/2F 0 0 3/2G+ J2 0

3
√

10/20B 0 0
√

6/4A
√

15/10B 0 J1 + J2





T̂11(a)

T̂20

T̂21(s)

T̂22(s)

T̂31(a)

T̂32(a)

T̂33(a)


[13]

and

d

dt



T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)



=−



2/5J1+ 8/5J2 0
√

15/10A 0 4/5J1− 4/5J2 0
√

15/5B 0

0 3/10C+ J1+ 2/5J2 0 −√15/10A 0
√

6/10C−√6/5J2 0 0

0 0 3/2G+ J1+ 2J2 0 0 0 0 0

0 0 0 3/2G+ 2J1+ J2 0 0 0 0

4/5J1− 4/5J2 0
√

15/5A 0 8/5J1+ 2/5J2 0 −√15/10B 0

0 3
√

6/20H −√6/5J2 0 3
√

10/20A 0 3/10H + J1+ 3/5J2 0 0

0 0 0 0 0 0 3/2G+ J2 0

0 3
√

10/20B 0
√

6/4A 0
√

15/10B 0 J1+ J2





T̂10

T̂11(s)

T̂21(a)

T̂22(a)

T̂30

T̂31(s)

T̂32(s)

T̂33(s)



.

to slowly fluctuating electric field gradients, andH∗S has now
explicitly to be taken into acount. The resulting time-evolutio
of the density matrix under relaxation takes on the form (16)
ia
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Relaxation effects can be incorporated into the different
equations through the addition of the relaxation contributi
to the master equation. This contribution has been derived
previous work, including the effect of the static Hamiltonian
the relaxation superoperator (16). The relaxation contribution
reduces to a combination of the spectral densitiesJm(mω0±λi )
at a number of frequenciesmω0±λi with m= 0,±1,±2 andλi

given by Eqs. [10] and [11]. The imaginary part of the spect
density function results in very small, second-order, frequen
shifts and in a weak coupling of the two sets of differential equ
tions. These dynamic frequency shifts are commonly ignor
The real part of the spectral density is defined as the (cos
Fourier transform of the electric field gradient correlatio
function.

Jm(ω) =
(

eQ

h-

)2 1

2

∞∫
〈[F∗2m(t)− 〈F∗2m〉]
−∞

× [F2m(t − τ )− 〈F2m〉]〉 exp(iωτ ) dτ. [12]
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The time-independent HamiltonianH∗s can however be negl-
ected in the relaxation terms proportional to the spectral dens
at approximately one and two times the Larmor frequency. T
is becauseω0 is generally much larger than any of the frequenci
λi and, hence,Jm(mω0± λi )≈ Jm(mω0)= Jm for m=±1 and
±2. Them= 0 term in the relaxation contribution is sensetiv
t
s

[14]
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The coefficientsA throughJ are linear combinations of the
pectral densities at frequenciesλ1, λ2, and zero:J0(λ1) =

Jλ1, J0(λ2) = Jλ2, andJ0(0)= J0, respectively. The coefficients
f these combinations are collected in Table 1. The frequenc
1 andλ2 are related to both the residual quadrupolar coupli
nd the (tunable) RF field strength according to Eq. [10]. D

o the presence of the RF field, the invariance of the spin sys
nder a rotation about thez axis is lifted. This results in a dif-

erent relaxation behavior of the symmetric and anti-symme
ensor combinations. In the absence of a low frequency disp
ion, i.e., whenJ0(0) ≈ J0(λ1) ≈ J0(λ2) = J0, theωQ andω1

ependencies in the rates Eqs. [13] and [14] vanish and the
rices reduce to the much simpler forms in terms ofJ0, J1, andJ2

nly and are listed in Ref. (16). Without RF, theωQ dependence
n the rates vanishes, because the static quadrupolar Ham
ian Eq. [5] commutes with them = 0 term in the fluctuating
uadrupolar Hamiltonian Eq. [7].
The total time-dependence of the basis operators is given
he sums of Eqs. [8] and [13], and Eqs. [9] and [14]. These two
ets of equations evolve independently, but they are coupled at
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TABLE 1
Coefficients in Eqs. [13] and [14] in Terms of the Spectral

Densities J0 (¸1), J0 (¸2), and J0 (0)

J0 (λ1) J0 (λ2) J0 (0)

A
ω1(ωQ+ω1)

λ2
1

ω1(ωQ−ω1)

λ2
2

−
2ω1ωQ

(
ω2

Q+ 2ω2
1

)
λ2

1λ
2
2

B −ω1(ωQ+ω1)

λ2
1

ω1(ωQ−ω1)

λ2
2

−
2ω2

1

(
ω2

Q − 4ω2
1

)
λ2

1λ
2
2

C −ω1(ωQ− 2ω1)

λ2
1

ω1(ωQ+ 2ω1)

λ2
2

2
(
ω4

Q + 8ω4
1

)
λ2

1λ
2
2

D
ω1(ωQ+ 4ω1)

λ2
1

−ω1(ωQ− 4ω1)

λ2
2

2ω2
Q

(
ω2

Q+ 2ω2
1

)
λ2

1λ
2
2

E
ω1(ωQ + 4ω1)

λ2
1

ω1(ωQ − 4ω1)

λ2
2

−
2ω1ωQ

(
ω2

Q − 4ω2
1

)
λ2

1λ
2
2

F −ω
2
1

λ2
1

ω2
1

λ2
2

−4ω3
1ωQ

λ2
1λ

2
2

G
ω2

1

λ2
1

ω2
1

λ2
2

2

3

[
ω4

Q+ω2
Qω

2
1+ 4ω4

1

λ2
1λ

2
2

]

H
ω1(ωQ+ 3ω1)

λ2
1

−ω1(ωQ− 3ω1)

λ2
2

2

3

[
2ω4

Q+ 5ω2
Qω

2
1− 4ω4

1

λ2
1λ

2
2

]

I −ω1(ωQ−ω1)

λ2
1

ω1(ωQ+ω1)

λ2
2

2

3

[
2ω4

Q−ω2
Qω

2
1+ 20ω4

1

λ2
1λ

2
2

]

J
ω1(ωQ−ω1)

λ2
1

ω1(ωQ+ω1)

λ2
2

−
2ω1ωQ

(
ω2

Q+ 6ω2
1

)
λ2

1λ
2
2

a change of RF phase. Once the eigenvalues and eigenope
are known, the time-dependence of each of the basis oper
can be determined. The time-evolution can be solved in ana
cal form in two limiting situations. In the absence of a RF fie
the results are given by, among others, Dinesen and Sanc
(26) and one of the present authors (24). Without quadrupolar
splitting (ωQ = 0), the relaxation under (pulsed) spin-lockin
in the doubly rotating (toggling) tilted frame has been analy
in previous work (12–14). In the simultaneous presence of
and a static quadrupolar coupling, the master equation cann
solved in analytical form. Although the eigensystems are rea
amenable by numeric methods, approximate analytic solut
under certain simplifying assumptions might be convenient
an understanding of the spin dynamics. For this purpose, we
first analyze the time-dependence of the density operator w
out relaxation effects in the context of the spin-lock experime
The effects of relaxation will subsequently be treated as a
order, time-independent, perturbation to the static Hamilton
H∗S (27).

UNPERTURBED TIME-DEPENDENCE UNDER THE
STATIC HAMILTONIAN
In aTlρ experiment, the density operator is initially prepared
aT̂11(a) state (proportional tox-magnetization) by a hard (π/2)y
REL ET AL.
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pulse followed by a spin-lock pulse with field strengthB1 along
thex axis (some experimental considerations are given belo
The first set of coupled differential equations (i.e., the sum
Eqs. [8] and [13]) containŝT11(a) and is hence relevant for
description of the spin-lock experiment. We will now analy
the corresponding eigensystem and the resulting time-evolu
of T̂11(a) under the static HamiltonianH∗S only.

Without relaxation, the time-evolution of the relevant sub
of the density operator is given by Eq. [8]. The seven eigenva
and eigenoperators of the matrix are, respectively (16),

0 A1 =
√

5

2

ω2
1

ω2
Q

T̂11(a)+
√

3

2

ω1

ωQ
T̂22(s)+ T̂33(a)

0 A2 =
(

5ω2
1√

6ω2
Q

−
√

2

3

)
T̂11(a)+

√
5

2

ω1

ωQ
T̂22(s)+ T̂31(a)

0 A3 =
√

5
ω1

ωQ
T̂11(a)+ T̂20 [15]

∓iλ1 A∓4 =
√

2

5

ωQ

ω1
T̂11(a)−

√
2T̂20∓

√
2

3

λ1

ω1
T̂21(s)

−
√

2

3

(
1+ ωQ

ω1

)
T̂22(s)+ 1√

15

(
5+ 2ωQ

ω1

)

× T̂31(a)±
√

2

3

λ1

ω1
T̂32(a)+ T̂33(a)

∓iλ2 A∓5 = −
√

2

5

ωQ

ω1
T̂11(a)+

√
2T̂20±

√
2

3

λ2

ω1
T̂21(s)

+
√

2

3

(
1− ωQ

ω1

)
T̂22(s)+ 1√

15

(
5− 2ωQ

ω1

)

× T̂31(a)±
√

2

3

λ2

ω1
T̂32(a)+ T̂33(a)

with λ1 andλ2 given in Eq. [10]. With eigensystem Eq. [15], th
unperturbed time-evolution of̂T11(a) takes on the form

ei H ∗St T̂11(a)e−i H ∗St

= a11(t)T̂11(a)+ a20(t)T̂20+ a21(t)T̂21(s)+ a22(t)T̂22(s)

+a31(t)T̂31(a)+ a32(t)T̂32(a)+ a33(t)T̂33(a) [16]

and the coefficientsai j (t) are set out in Table 2. Spectra r
sulting from the Fourier transform of the time-evolutions in
the various (indicated) coherences are displayed in Fig
These spectra were calculated by numerically solving Eqs
and [13] with the density operator in the initial̂T11(a)
in
state and including relaxation effects as detailed below. The
resonance positions and integrated intensities are given by
the coefficientsai j (t) in Table 2. In particular, the spectra
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ωQτS= 0.1 and root-mean
with a high frequency contr
eters areωQ/2π= 0.75 kHz
DYNAMICS OF SPIN I = 3/2

TABLE 2
Coefficients Giving the Time-Dependence of T̂11(a) under H¤S

a11(t)
1

10

4
(
ω4

Q+ 4ω2
Qω

2
1+ 40ω4

1

)
λ2

1λ
2
2

+ 3ω2
Q

cosλ1t

λ2
1

+ cosλ2t

λ2
2


a20(t)

3ωQω1

2
√

5

2
(
ω2

Q + 4ω2
1

)
λ2

1λ
2
2

− cosλ1t

λ2
1

− cosλ2t

λ2
2


a21(t)

i
√

3ωQ

2
√

5

(
sinλ1t

λ1
+ sinλ2t

λ2

)

a22(t) −
√

3ωQ

2
√

5

2ω1

(
ω2

Q − 4ω2
1

)
λ2

1λ
2
2

+ (ωQ + ω1) cosλ1t

λ2
1

− (ωQ − ω1) cosλ2t

λ2
2


a31(t) −

√
3ωQ

10
√

2

4ωQ

(
ω2

Q − ω2
1

)
λ2

1λ
2
2

− (2ωQ + 5ω1) cosλ1t

λ2
1

− (2ωQ − 5ω1) cosλ2t

λ2
2


a32(t) − i

√
3ωQ√
5

(
sinλ1t

λ1
− sinλ2t

λ2

)
 
3ωQω1 4ωQω1 + cosλ1t − cosλ2t 
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FIG. 1. Simulated spectra resulting from the Fourier transform of the
merically solved time-evolution Eqs. [8] and [13]. The density operator is
pared in aT̂11(a) state (proportional tox-magnetization) by an initial hard
(π/2)y pulse followed by a 90◦ phase shift. The detected coherences are i
cated. The spectral densities are calculated with a slow mode correlation
-square coupling constantχS= 2.5 kHz, together
ibutionα= (x2

F τF )/(x2
SτS)= 0.1. The other param-

andω1/2π= 1.5 kHz (ω1/ωQ= 2).
λ2
1λ

2
2 λ2

1 λ2
2

u-
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di-
time

corresponding to thêT11(a), T̂20, T̂22(s), T̂31(a), and T̂33(a)
coherences show a prominent central resonance and
satellite pairs at frequenciesλ1 and λ2, respectively (for
T̂11(a) the intensities of the satellites are negligibly sma
with the present parameters). A central resonance is ab
in the signals pertaining tôT21(s) and T̂32(a), which dis-
play two satellite pairs in anti-phase only. The remaining c
herences [i.e.,̂T10, T̂11(s), T̂21(a), T̂22(a), T̂30, T̂31(s), T̂32(s),
andT̂33(s)] belong to the other subset (with a time-evolution d
termined by Eqs. [9] and [14]) and are irrelevant in the context
the spin-lock experiment. Furthermore, the Fourier transfor
of the conversions into the latter coherences display four sa
lite pairs only (at frequencies given by Eq. [11]) and no cent
line (spectra not shown).

Satellites are liable to line-broadening effects related
inhomogeneity inB1 field strength and/or a distribution in
static quadrupolar coupling across the sample. According
the central lines in the spectra pertaining to theT̂11(a), T̂20,

T̂22(s), T̂31(a), and T̂33(a) coherences are designated fo
relaxation studies. The shapes of these central lines are
termined by the perturbation of the nullspace of the matrix
Eq. [8]. The nullspace is spanned by the three eigenoperatorsA1,
A2, and A3 with zero eigenvalue (the nullity is 3). As a resu
of the perturbation by the relaxation terms, the originally d
generate eigenvalues cease to be degenerate and the singu
is removed. The central resonance becomes hence multimo
i.e., it consists of a sum of Lorentzians with different widths a
amplitudes. The maximum number of modes equals the nul
3. The widths and amplitudes follow from the numeric integr

tion of the sum of Eqs. [8] and [13], but in the next section
we will derive solutions under the condition that the linewidths
are much smaller than any of the frequenciesλ1 andλ2. This
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condition can always be arranged with a sufficiently intense
field strength. We will analyze the relaxation behavior with tim
independent first-order perturbation theory for a system wh
the unperturbed operator has a discrete spectrum of degen
and nondegenerate eigenvalues (27).

PERTURBATION ANALYSIS OF THE LINE-SHAPES

Under the condition that the linewidths are much smaller th
the frequenciesλ1 andλ2, the operators corresponding with th
nonsingular eigenvalues in Eq. [15] are to a very good appr
mation still eigenoperators if the relaxation contribution Eq. [1
is included. The operatorsA±4 andA±5 oscillate with frequen-
cies±λ1 and±λ2, respectively, and are decoupled and re
independently from any other eigenoperator. For these de
en-
pled operators, the relaxation rates are given by the real part of

R
1ρ
S = J1 + J2 BS = −

√
5

3
A1 + A2

R
lρ
F∓ = p∓

√
q2 + r 2

B∓ = − 1√
2

[ (
ω4

Q + ω2
Qω

2
1 + 4ω4

1

)
r ± λ1λ2

(
ω2

Q − ω2
1

)√
q2 + r 2

λ1λ2
(
ω2

Q − ω2
1

)
q + 6ωQω

3
1r

]
A1 +

√
3

10

[
2λ1λ2ωQω1q − (ω4

Q + 3ω2
1ω

2
Q − 4ω4

1

)
r ∓ λ1λ2

(
ω2

Q + ω2
1

)√
q2 + r 2

λ1λ2
(
ω2

Q − ω2
1

)
q + 6ωQω

3
1r

]
A2 + A3

[18]

with

p = 3ω2
1

2

 Jλ2

λ2
2

+ Jλ1

λ2
1

+ 3

2
J1 +

3
(
ω4

Q + 2ω2
1ω

2
Q + 8ω4

1

)
2λ2

1λ
2
2

J2 q = 3ω2
1

2

 Jλ2

λ2
2

− Jλ1

λ2
1

− 4ωQω1

λ2
1λ

2
2

J2



dious, but straightforward, algebra, the resulting rates and eig
operators take on the form
Q

ro
a
o

two
e
rder
)
tors
-
th

Furthermore,R and the corresponding eigenoperatorB (i.e.,
r = (ωQ − 2ω1)(ω

2λ1λ2

the diagonal elements of the master equation in the (app
imate) eigenoperator representation Eq. [15] (the imagin
part gives the frequencies). These real parts of the diag
elements read

A±4 :
(ωQ+ω1)2

λ2
1

J0+ 3ω2
1

2λ2
1

Jλ1+ J1+
2ω2

Q+4ωQω1+11ω2
1

2λ2
1

J2

A±5 :
(ωQ−ω1)2

λ2
2

J0+ 3ω2
1

2λ2
2

Jλ2+ J1+
2ω2

Q−4ωQω1+11ω2
1

2λ2
2

J2.

[17]
The rates of the satellite pairs at frequencies±λ1 and±λ2 are
REL ET AL.
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readily identified with the rates of the operatorsA±4 and A±5,
respectively. The relative intensities are given by the res
in Table 2. However, signals originating from the satellit
have little practical value due to the additional line-broaden
effects given byB1 field inhomogeneity and/or distribution in
static quadrupolar coupling.

The operatorsA1, A2, andA3 are coupled and their degene
acy is removed by the relaxation contribution. They are howe
decoupled fromA±4 andA±5, if the central resonance does n
overlap with the satellites. The corresponding subset of the m
ter equation in the operator representation Eq. [15] (the sec
terms) can be diagonalized and subsequently integrated in
lytical form. For this purpose, one must solve the secular eq
tion pertaining to the operatorsA1, A2, andA3 to determine the
eigenvalues (relaxation rates) and to calculate the correspon
eigenoperators in the first approximation (27). After some te-
+ 2ω1)
(J1 + J2).

[19]

x-
ry
nal

In general, the central resonance shows a slow mode and
faster modes with ratesR1ρ

S andR1ρ
F∓, respectively, because th

spectral densities decrease in magnitude according to the o
Jλ2 ≥ Jλ1 ≥ J1 ≥ J2. The relative contributions (amplitudes
of the respective modes are determined by the eigenopera
BS and B∓. The fast ratesR1ρ

F∓ and the corresponding eigen
operatorsB∓ depend on the ratio of the spin-lock field streng
and the static quadrupolar couplingω1/ωQ. Slow dynamics is

probed by the fast modes, because the ratesR1ρ
F∓ are sensitive

to the spectral densitiesJλ1 = J0(λ1) and Jλ2 = J0(λ2) [note
that they are insensitive toJ0(0)]. The slow relaxation rateR1ρ

S
is sensitive to the high frequency contributionsJ1 and J2 only.

1ρ

s S

the relevant combination ofA1 and A2) are insensitive to the
relative strengths of the static interactions.
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are only excited
and bimodal lin
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TABLE 3
Amplitudes in the Relaxation Functions of the Central Resonance Eq. [21]

AS AF∓

g11(t)
1

5

1

10

ω4
Q + 4ω2

Qω
2
1 + 64ω4

1

λ2
1λ

2
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Qω1q
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+ (ωQ + 4ω1)(ωQ − 4ω1)r
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√
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√
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1 + 16ω4
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− 3ωQω1r
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√
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2
√
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2
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√
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√
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amplitudes. The resulting lineshapes have a relatively simple
g33(t) √
10

−
2
√

10


λ2
1λ

2
2

±

The conversion ofT̂11(a) into the central resonance of th
various coherences takes on the form [in the arrow notation (10)]

T̂11(a)→ g11(t)T̂11(a)+ g20(t)T̂20+ g22(t)T̂22(s)

+ g31(t)T̂31(a)+ g33(t)T̂33(a), [20]

with the real (nonoscillating) relaxation functions

gi j (t) = AS exp
{−R1ρ

S t
}+ AF− exp

{−R1ρ
F−t

}
+ AF+ exp

{−R1ρ
F+t

}
. [21]

The factors (amplitudes)AS and AF∓ are calculated with the
eigenoperators in Eq. [18] and have been set out in Table 3
time evolution of the other operators, pertaining to differ
initial states of the density operator, can analogously be der
For each coherence, it was checked that the sum of the a
tudes of the slow and the fast modes (i.e., the integrated inte
of the central resonance) agrees with the relevant term
Table 2. It is interesting that the conversions into the quadrup
spin polarizationT̂20 and the rank-two double-quantum coh
enceT̂22(s) are bimodal, i.e.g20(t) andg22(t) do not exhibit a
slow mode (AS = 0). Furthermore, as will be discussed belo
the latter two coherences are only excited if the ratioω1/ωQ is
of the order of unity. These features are particularly promis
from an experimental point of view, because these cohere
in the presence of a static quadrupolar coup
eshapes are easier to analyze than a trim
λ2
1λ

2
2

√
q2 + r 2

+
λ1λ2

√
q2 + r 2

e
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resonance. As in the case ofR1ρ
S , the amplitude of the slow

mode does not depend on the spin-lock field strength or
value of the static quadrupolar coupling. This is because
corresponding eigenoperatorBS is insensitive to these stati
interactions. For the fast modes, the amplitudes depend on
ratioω1/ωQ as well as the spectral densities through the para
etersq andr . In the limitq→ 0 and/orr → 0 the dependencie
of the amplitudes on the spectral densities are seen to va
and the expressions are considerably simplified. These limi
situations correspond to some specific experimental conditi

According to Eq. [19], the limitr → 0 is realized when the
high frequency spectral densitiesJ1 and J2 dwindle and/or if
ω1 = ωQ/2. Varying the RF field strength can always fulfill th
latter condition, but the matching can become problematic
the face ofB1 inhomogeneity. The former situation is difficu
to achieve because the high frequency spectral densities
usually not be neglected. Forω1 = ωQ/2, the fast rates read

R1ρ
F− =

1

4
Jλ1+

3

2
J1+5

4
J2

(ω1=ωQ/2, λ1= 2
√

3ω1, λ2= 2ω1)

R1ρ
F+ =

3

4
Jλ2+

3

2
J1+3

4
J2 [22]

and the amplitudes are set out in Table 4. Both fast relaxa
rates are accessible, due to the nonzero and fixed values o
ling
odal
form and are suitable for fitting (although the conditionω1 =
ωQ/2 limits the range of applicability).



a

s

v

c
a

i
t

e
tion
nce

the

n by
he
ill
ns
ent
e.,
e

tral
h

tro-
ly-
es at

ort

ent
ular
the
all

ing
e

n-
ieve
ost
eri-
i.e.,
eter
306 VAN DER MAA

TABLE 4
Amplitudes of the Fast Modes in the Relaxation Functions of the

Central Resonance Eq. [21] in Some Specific Situations

ω1 ¿ ωQ ω1 = ωQ/2 ω1 À ωQ

(q= 0) (r = 0) (q= 0)

AF− AF+ AF− AF+ AF− AF+

g11(t)
1

5
0

3

10

1

10

4

5
0

g20(t) 0 0
3

4
√

5

1

4
√

5
0 0

g22(t) 0 0 −
√

3

4
√

5

√
3

4
√

5
0 0

g31(t) −
√

3

5
√

2
0 −

√
3

20
√

2

3
√

3

20
√

2

√
3

5
√

2
0

g33(t) − 1√
10

0 − 3

4
√

10

1

4
√

10
− 1√

10
0

The other simplifying situationq → 0 corresponds with the
two limiting experimental conditionsω1ÀωQ andω1¿ωQ.
In the former limit, the RF field strength far exceeds the sta
quadrupolar coupling and the frequencies collapse to the s
valueλ1 = λ2 = 2ω1 (the subsetA1, A2, andA3 is still decou-
pled from any otherAm). The corresponding rates of the fa
modes now take on the values

R1ρ
F− =

3

4
Jλ1 + J1+ 1

4
J2

(ω1ÀωQ, λ1 = λ2 = 2ω1)

R1ρ
F+ =

3

4
Jλ2 + 2J1+ 5

4
J2 [23]

and the amplitudes are also collected in Table 4. The rateR1ρ
F+

is however inaccessible, becauseAF+ = 0 for all coherences.
For such strong RF field, thêT20 andT̂22(s) coherences are no
longer excited and the central resonance of the other rele
coherences is now bimodal. In particular, outside the extre
narrowing limit, T̂31(a) and triple-quantum̂T33(a) coherences
are created, despite the vanishing small static quadrupolar
pling with respect to the RF field strength. These results
in complete agreement with previous results derived under
neglect of a static quadrupolar coupling (ωQ = 0) in the doubly
rotating tilted frame (12–14).

For very weak RF irradiationω1¿ωQ, λ1 = λ2 = ωQ, one
essentially spin-locks the central transition and the relaxat
rates are no longer sensitive to the low frequency spec
densities:

R1ρ
F− = J1+ J2

(ω1¿ ωQ, λ1 = λ2 = ωQ).
R1ρ

F+ = 2J1+ 2J2

[24]
According to the values of the amplitudes in Table 4, the only a
cessible rate isR1ρ

F− (AF+ = 0). Furthermore, the expression fo
REL ET AL.
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R1ρ
F− equals the expression forR1ρ

S (see Eq. [18]) and, hence, th
difference in slow and fast modes has disappeared (the relaxa
functions are monoexponential). As far as the central resona
is concerned, onlyT̂11(a) and T̂31(a) single-quantum coher-
ences are excited and the signal contributions pertaining to
zero- and multi-quantum coherences are seen to vanish (T̂33(a) is
no longer created becauseAS+AF− = 0). This behavior agrees
with the previously derived results for spinI = 3/2 in a nonzero
average electric field gradient without spin-lock field (24).

In the general case, the rates of the fast modes are give
the rather complicated results given in Eqs. [18]–[21] with t
amplitudes collected in Table 3. In the next section we w
compare the approximate analytic solutions with the solutio
obtained from the numeric diagonalization and subsequ
integration of the first set of coupled differential equations (i.
the sum of Eqs. [8] and [13]). Furthermore, we will show th
behavior of the fast modes for a specific form of the spec
density function with various correlation times and/or hig
frequency contributions.

THE FAST MODES

For a further analysis of the fast modes, it is necessary to in
duce a specific form of the spectral density function. In biopo
mer solutions there are often several independent process
different time scales causing the loss of correlation (2, 11). Here,
we will assume that there are two correlation times, a very sh
time τF and a longer timeτS. The longer correlation time is
associated with slow fluctuations in the (ordered) environm
due to, e.g., rearrangements of relatively large macromolec
segments. The other very short correlation time is related to
dynamics of surrounding water molecules and/or other sm
ions, which typically occurs on a 10−12 s time scale. Accord-
ingly, the fast process is taken to be in the extreme narrow
limit ω0τF ¿ 1. With a biexponential correlation function, th
spectral density reads

Jm(ω) = (2π)2

20

(
χ2

SτS

1+ ω2τ 2
S

+ χ2
FτF

)
[25]

= (2π)2χ2
SτS

20

(
1

1+ ω2τ 2
S

+ α
)
,

whereχS andχF denote the root-mean-square coupling co
stants of the slow and fast process, respectively. We bel
that this form of the spectral density function captures m
of the specific effects, which may be encountered in exp
mental studies. The relative importance of the fast process (
the high frequency contribution) is expressed by the param
α = (χ2

FτF )/(χ2
SτS).

The fast rates are displayed vsω1/ωQ in Fig. 2 for a num-
ber of scaled slow correlation timesωQτS. The rates are scaled

c-
r
by J0 and are hence in dimensionless units. Here, there is no
high frequency contribution to the spectral density (α = 0). It
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FIG. 2. Relaxation rates of the fast modes Eq. [18] scaled byJ0 vs the rela-
tive RF field strengthω1/ωQ. The symbols refer to the scaled correlation time
circles,ωQτS= 1; upper triangles,ωQτS= 0.1; lower triangles,ωQτS= 0.01;
and squares,ωQτS= 0.001. Open and closed symbols denoteR1ρ

F− and R1ρ
F+,

respectively. There is no high frequency contribution to the spectral den
(α= 0).

was checked that the approximate solutions resulting from
perturbation treatment Eqs. [18] and [19] are indiscernible fr
the rates obtained from the numerically solved time-evolut
Eqs. [8] and [13] (the satellites do not overlap with the ce
tral resonance). If the high frequency contribution is negligib
the rates vary with increasing RF field strength according
3ω2

1/λ
2
1Jλ1 and 3ω21/λ

2
2Jλ2 for R1ρ

F− and R1ρ
F+, respectively. For

stronger RF field strengths, the rates display a maximum
eventually level off at 3/4J0(2ω1) . The position of the maxi-
mum depends on the value of the correlation time. However,
RF field strength dependence of the fast rates becomes far m
complicated if the high frequency contribution to the spect
density cannot be neglected.

The importance of the spectral density at high frequenc
as expressed by the parameterα, is illustrated in Fig. 3. Note
that the actual value of the Larmor frequency is irrelevant,
cause the fast relaxation process is assumed to be in the ext
narrowing limit (ω0τF ¿ 1). The rates (scaled byJ0) are dis-
played vsω1/ωQ for a fixed slow correlation timeωQτS = 0.1.
As for the amplitudes (see below), the perturbation results ag
with the solutions resulting from numeric diagonalization a
integration of the master equation. The high frequency con
bution has a dramatic effect on the rates. In particular, wh
α exceeds, say, unity, a rather abrupt change is observe
ω1 = ωQ/2. This is related to the increasing importance of t
parameterr (Eq. [19]) with increasing values ofJ1 and J2. As
will be discussed below, similar critical behavior is observed
the amplitudes. The relaxation rates agree with Eqs. [22], [2
and [24] for the specific conditionsω1 = ωQ/2,ω1À ωQ, and
ω1¿ ωQ, respectively.

The amplitudes of the fast modes are displayed vsω1/ωQ in
Figs. 4–8 forωQτS = 0.1 and a number of values ofα. With a

shorter scaled slow correlation timeωQτS, the amplitudes take
their limiting values for stronger RF fields (data not shown
The general behavior is however similar to the one display
SPIN I = 3/2 307

:

ity

he
m
n
-

e,
to

nd

he
ore

al

s,

e-
eme

ree
d
ri-
en

at
e

in
3],

FIG. 3. As in Fig. 2, but for a fixed scaled correlation timeωQτS= 0.1 and
high frequency contributions to the spectral density: upper triangles,α= 0.01;
lower triangles,α= 0.1; squares,α= 1; and diamonds,α= 10.

FIG. 4. Amplitudes of the fast modes (top)AF+ and (bottom)AF− in the
central resonance component of theT̂11(a) coherence [g11(t)] vs the relative
RF field strengthω1/ωQ with a fixed scaled correlation timeωQτs= 0.1. The
).
ed

symbols refer to the high frequency contributions to the spectral density: up-
per triangles,α= 0.01; lower triangles,α= 0.1; squares,α= 1; and diamonds,
α= 10.
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FIG. 5. As in Fig. 4, but for theT̂20 coherence [g20(t)].

in Figs. 4–8. Accordingly, the amplitudes are rather inse
tive to the value of the slow correlation time. In contrast,
spectral density at high frequencies has a strong effect, e
for ω1 = ωQ/2, ω1ÀωQ, or ω1¿ωQ. For the latter settings
the dependencies on the spectral densities vanish, in accor
FIG. 6. As in Fig. 4, but for theT̂22(s) coherence [g22(t)].
REL ET AL.

si-
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ance

FIG. 7. As in Fig. 4, but for theT̂31(a) coherence [g31(t)].

with the results set out in Table 4. The two fast modes are onl
multaneously observable ifω1/ωQ equals unity within an orde
of magnitude. For higher RF field strength, the amplitudes t
their limiting values (Table 4) and the central resonance ei
vanishes [̂T20 andT̂22(s)] or becomes bimodal [̂T11(a), T̂31(a),
FIG. 8. As in Fig. 4, but for theT̂33(a) coherence [g33(t)].
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andT̂33(a)]. As in the case of the rates, the amplitudes show
abrupt change atω1 = ωQ/2 whenα exceeds, say, unity.

PRACTICAL CONSIDERATIONS

The general pulse sequence of a spin-lock experiment is g
by

(π/2)φ+90− (B1, t1)φ − (β)φ′ − detection,t2, [26]

where the final pulse is possibly included for coherence tran
Note that the filter contains a single transfer pulse only and
the conventional pulse-pair at the end of the evolution perio
is not necessary to include a mixing pulse, because the mult
quantum coherences are already excited during the evolu
under the lock. An initial (hard) pulse followed by a 90◦ phase
shift is necessary to prepare the density operator in an in
state belonging to the relevant subset in Eqs. [8] and [13]. In
detection period, the relevant single-quantum coherences ev
into (detectable)̂T11(a) coherence according to (24)

T̂11(a)→ 1

5
[3 cos(ωQt2) exp(−Rst2)+ 2 exp(−Rct2)]T̂11(a)

T̂21(s)→ i

√
3

5
sin(ωQt2) exp(−Rst2)T̂11(a) [27]

T̂31(a)→ 1

5

√
6[cos(ωQt2) exp(−Rst2)− exp(−Rct2)]T̂11(a),

with Rs = J0+ J1+ J2 andRc = J1+ J2 being the transvers
relaxation rates of the satellites and the central resona
(without spin-lock field), respectively. It is advisable to d
two-dimensional (2D) experiments, either with or witho
coherence transfer. A set of spectra is obtained as a functio
the spin-lock timet1, after Fourier transformation with respe
to the detection timet2[F(ω2) domain]. A phase sensitive 2D
spectrum can now be obtained by taking the real part of this
and subsequent Fourier transformation with respect to the s
lock time t1. The signals in theF(ω1) domain, pertaining to a
certain static quadrupolar interaction, can be selected by ta
a section alongF(ω1) at the position of the corresponding sat
lite signal in F(ω2). This procedure is especially facilitated
the zero- and double-quantum filtered experiments, bec
these signals do not exhibit a central line in theF(ω2) domain
(see below).

Without final coherence transfer pulse (i.e., in a conventio
spin-lock experiment), the detected signal includesT̂11(a),
T̂21(s), andT̂31(a) single-quantum coherences. After 2D Four
transformation, the central resonance in theF(ω1) domain
contains the signal contributions originating from̂T11(a) and
ˆ ˆ
T31(a). The contribution related toT21(s) is transformed into
two satellite pairs in anti-phase inF(ω1) and does not con-
tribute to the central resonance [inF(ω1)]. Accordingly, the
SPIN I = 3/2 309
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lockedT̂11(a) coherence converts into

T̂11(a)→ g11(t1)T̂11(a)+ g31(t1)T̂31(a), [28]

which further evolves into detectable magnetization during
detection period. With Eq. [27], the directly detected signal ta
the form

s(t1, t2) = 1

5
[(3g11(t1)+

√
6g31(t1)) cos(ωQt2) exp(−Rst2)

+ (2g11(t1)−
√

6g31(t1)) exp(−Rct2)]. [29]

TheT1ρ relaxation of the satellites and central transition inF(ω2)
is readily identified in the first and the second term on the rig
hand side of Eq. [29], respectively. For the satellites, the am
tude of the slow modeAS is seen to vanish in the relevant com
bination of the relaxation functions 3g11+

√
6g31 (see Table 3).

Accordingly, theT1ρ relaxation of the satellites is bimodal and
sensitive to the fast modes only. Finally, the higher rank con
butions are seen to vanish if one records the (extrapolated)
plitude of the detected signal directly after the spin-lock pu
(t2→ 0 ), or, alternatively, if one integrates the complete sp
trum in theF(ω2) domain.

The spin-lock experiment can be optimized to selectively
tect the spin polarization quadrupolar orderT̂20, the double-
quantum coherenceŝT22(s) and T̂32(a), or the triple-quantum
coherenceT̂33(a). The other zero- and multi-quantum cohe
ences belong to the other subset and are irrelevant in the co
of the spin-lock experiment (they also do not exhibit a cen
line in theF(ω1) domain). In particular, the selective detection
T̂22(s) or T̂20 is interesting from an experimental point of view
because the corresponding central resonance signals [inF(ω1)]
are bimodal and are sensitive to the fast relaxation modes o
As we will see below, in particular the signal pertainingT̂20 is
most suitable to extract information about the low frequency
havior of the spectral density function and to selectively det
spin I = 3/2 nuclei in a nonzero average electric field gradie

In the coherence transfer experiments, the final transfer p
and the various phases should take on the following values

(i) For optimized detection of the spin polarization quadrup
lar order T̂20, the final coherence transfer pulse should re
β = 45◦. To suppress coherences up to and including orde
the phaseφ is stepped through 0◦, 60◦, 120◦, 180◦, 240◦, and
300◦while the receiver phase is kept at a constant value. Bec
of the invariance ofT̂20 with respect to a rotation about thez
axis, the value of the phaseφ′ of the coherence transfer puls
is irrelevant. Due to imperfections in the preparation pulse
subsequent 90◦ phase shift, Zeeman orderT̂10 and octopolar spin
polarizationT̂30 may also be excited. Their signal contributio
can however be suppressed by performing two experiments

◦ ◦
coherence transfer pulse anglesβ = 45 and 135, respectively,
and subsequent subtraction of the resulting spectra. For a single
pulse angle, the same effect can be achieved if one takes the
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difference of the sections at the resonance positions of the
satellites in the acquisition domain (see below).

(ii) In the triple-quantum filtration experiment,β = 90◦. The
phaseφ is also stepped through 0◦, 60◦, 120◦, 180◦, 240◦, and
300◦, but the receiver phase should now be alternated betw
0◦ and 180◦. Here, the phaseφ′ of the final pulse is set to 0◦ for
selective detection of̂T33(a) (the experiment is optimized fo
the unwanted̂T33(s) coherence ifφ′ = 30◦).

(iii) In the double-quantum filtration experiment, the pha
φ is stepped through the values 0◦, 90◦, 180◦, and 270◦ with
the receiver phase being alternated between 0◦ and 180◦. The
phaseφ′ is set to 45◦ for selective, simultaneous, detection
T̂22(s) and T̂32(a) (the other combinations are selectively d
tected ifφ′ = 0◦). A double-quantum filtered 2D spectrum wi
optimized pulse angleβ = 90◦ displays two signal contribu
tions: T̂22(s) and T̂32(a). The latter contribution does not ex
hibit a central resonance inF(ω1) and is hence irrelevant from
a relaxation analysis point of view. ThêT32(a) coherence con
tribution can be suppressed however (at the cost of S/N ra
by decreasing the length of final coherence transfer pulse
thatβ = arccos(1/

√
3)= 54.7◦.

These phase cycles are possibly supplemented with a p
alternation of the preparation pulse between+90◦ and−90◦

together with an additional 180◦ alternation of the receiver phas
In the experimental section, we will demonstrate the feasib
of these coherence transfer experiments.

The preparation of the density operator depends on the
field strength of the initial pulse in Eq. [26]. A purêT11(a)
initial state can only be prepared if the effects of relaxat
and the static quadrupolar interaction can be neglected du
a sufficiently hard preparation pulse. If this cannot be reali
experimentally, the initial density operator after the phase s
will be in a mixed state includinĝT10, T̂30, T̂11(a), T̂21(s),
T̂22(s), T̂31(a), T̂32(a), andT̂33(a) coherences. The subseque
relaxation of the central resonance under the RF lock is
given by the rates in Eqs. [18] and [19], but the amplitudes
the various modes will be different from those collected in Ta
3. Although the amplitudes can be derived analytically, it is m
convenient to calculate them with a numeric integration of
master equation (including the effects of the preparation
coherence transfer pulses and the phase-shifts). It was che
however that under any circumstances the evolutions intoT̂20

andT̂22(s) coherences do not exhibit a slow mode and rem
bimodal.

EXPERIMENT

Experiments have been done on spinI = 3/2 sodium in a
dense (250 mg/ml), cholesteric, liquid crystal of 150 base-
DNA fragments in water. This system has previously been inv

tigated with extensive field-dependent longitudinal and tran
verse relaxation experiments (2). At 273 K, the sodium reso-
nance shows a moderate static quadrupolar splittingωQ/2π =
REL ET AL.
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550 Hz. The NMR experiments were done with a Bruker AM
200 spectrometer equipped with a 4.7 T wide-bore superc
ducting magnet and a fast recovery preamplifier. A homem
probe with a solenoid coil was used. To minimize dielect
heating due to parasitic capacitance during RF irradiation
Faraday shield (consisting of a set of parallel, isolated, wir
was mounted inside the coil and at one side connected to gro
The sample was contained in a nonspinning 5-mm outer dia
ter and 1.5-cm length glass tube. The temperature was contro
at 273 K with a fluid thermostat using Fluorinert grade FC-
(3M Co.). The hard (π/2) pulse duration was 9µs, whereas the
spin-lock field intensity was tuned between 0.2 and 5 kHz
ing a Bruker BFX-5 low power transmitter. The RF carrier w
adjusted exactly on resonance. For each experiment, 128 F
were collected with an incremental spin-lock time 165µs. A
20 Hz Lorentzian line broadening was applied prior to Four
transformation with respect to the spin-lock time.

Since the static quadrupolar coupling is rather moderate,
limiting situationω1/ωQÀ 1 can be achieved for the highes
available spin-lock field strengthω1/2π = 5 kHz. In this situa-
tion, the conventionalT1ρ relaxation of the spin-locked magnet
zation [T̂11(a)] is almost biexponential with amplitudesAF− =
0.8,As = 0.2 and ratesR1ρ

F− = 3/4J0(2ω1)+ J1+1/4J2, R1ρ
s =

J1+ J2, respectively (Table 4 and Eq. [23] withλ1 ≈ λ2 ≈ 2ω1).
The high frequency contributionsJ1 andJ2 were obtained from
an inversion recovery experiment and take the values 130
110 s−1, respectively (28). With the present spin-lock field
strength and sweep width in theF1 domain (6.06 kHz) the satel
lites are not observable. The rates were fitted to the data
the low frequency spectral density can now be derived from
fast relaxing component and readsJ0(2ω1)= 310 s−1 (ω1/2π=
5 kHz).

In the presence of a large static quadrupolar coupling, the l
iting situationω1/ωQÀ 1 can possibly not be achieved due
limited RF power. The conventionalT1ρ relaxation experiment
is now less eligible to extract dynamic information, because
relaxation functions become trimodal with rather complicat
dependencies of the rates and amplitudes on the spin-lock
strength. It is now advisable to monitor the evolutions into t
spin polarization quadrupolar orderT̂20 or the double-quantum
T̂22(s) coherences, since these evolutions are sensitive to
fast relaxation rates only and are bimodal. Furthermore, the
ter two coherences can only be excited in the presence of a s
quadrupolar coupling and, hence, makes it possible to disc
nuclei in anisotropic environment from those experiencing
zero average electric field gradient. We will now demonstr
the feasibility of the coherence transfer experiments and inv
tigate to what extent the low frequency spectral densities ca
obtained with limited RF power as well.

An experimental zero-quantum filtered 2D spectrum p
taining to theT̂20 coherence is shown in Fig. 9. The spe

s-trum was recorded with a relatively moderate RF field strength
ω1/ωQ = 0.7. A characteristic satellite pair in anti-phase in
F(ω2) with a splittingωQ/2π = 550 Hz is observed, which is
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FIG. 9. Experimental 2D contour spectrum of the selectively detec
quadrupolar order̂T20 in a dense DNA liquid crystal (at 273 K). Experimenta
parameters:ω1/ωQ= 0.7 andωQ/2π= 550 Hz. The absolute value of the spe
trum is displayed. The feature at the center is due to pulse-phase imperfec

characteristic of the evolution of rank-two single-quantum c
herence into observable magnetization during the detection
riod (see Eq. [27], in the figure the phase information is lost,
cause the absolute value of spectrum is displayed). Apart f
the central resonance, the spectrum displays the two chara
istic satellite pairs at frequenciesλ1/2π andλ2/2π in F(ω1) at
the satellite positions inF(ω2) . The positions of the satellite
in F(ω1) agree with the spin-lock field strength and the value
the static quadrupolar coupling.

Figures 10 and 11 display the difference of the sections al
F(ω1) at the satellite positions inF(ω2) for a variety of 2D
experimental spectra. In Fig. 10, the experiments were o
mized to selectively detectT̂20 (as in Fig. 9), the double-quantum
coherencêT22(s), or the triple-quantum coherenceT̂33(a) with
a fixed value of the spin-lock field strengthω1/ωQ = 1.3.
Figure 11 shows the selectively detectedT̂20 coherence for a
range of relative RF field strengthsω1/ωQ. The relative intensity
of the spectrum pertaining to thêT22(s) coherence with respec
to the intensities of the other coherences is rather small,
cause in the double-quantum filtered experiment the coher
transfer pulse angle was decreased to the magic angle 54.7◦ for
suppression of the unwantedT̂32(a) coherence signal. The cen
tral resonance in thêT33(a) spectrum exhibits a strong, relative
narrow, Lorentzian component pertaining to the slow mode
accordance with theory, the slow mode is absent in the cen
resonance of the selectively detectedT̂20 andT̂22(s) spectra and
their shapes are sensitive to the fast modes only. The pos
of the satellites is very sensitive to the spin-lock field strength
the splitting increases with increasing RF power. Furthermo
they are particularly prone to inhomogeneous line broaden
because of the inhomogeneity in the spin-lock field.

ˆ
TheT20 spectra in Figs. 10 and 11 are supplemented with si
plex fits of the numerically solved time-evolution Eqs. [8] an
[13], in which the spin-lock field strengths and inhomogenei
SPIN I = 3/2 311
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as well the spectral density are optimized. As a first appr
imation, it is assumed that the inhomogeneous broadenin
the satellites at the frequenciesλi (i = 1,2) is related to theB1

inhomogeneity1ω1 according to1ωλi = |∂λi /∂ω1|1ω1. In
the numerical procedure, the satellites were accordingly con
luted with the relevant broadening factors. Furthermore, it w
assumed that the spectral density shows no dispersion in
0–5 kHz range. Accordingly, thêT20 spectra were fitted with
four adjustable parameters: an overall factor, a spin-lock fi
strength, a relative inhomogeneity1ω1/ω1, and the low fre-
quency spectral densityJ0(0) ≈ J0(λ1) ≈ J0(λ2). The high
frequency spectral densitiesJ1 andJ2 were fixed at their values

FIG. 10. Experimental sections (dots) alongF1 of the selectively detected
(top) T̂33(a), (middle) T̂22(s), and (bottom)T̂20 coherences. For̂T22(s) and
T̂20 the difference of the sections at the resonance positions of the two sate
in F2 are displayed. The spectra were recorded with a relative RF field stre

m-
d
ty,

ω1/ωQ= 1.3 (ωQ/2π = 550 Hz). The solid lines represent simplex fits. To avoid
overlap, the spectra are shifted upward with 4 and 6 units for the double- and
triple-quantum coherence, respectively.
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obtained from an inversion recovery experiment. It should
noted that the spin-lock field strength and inhomogeneity
termine the positions and widths of the satellites, respectiv
The width of the central resonance is sensitive to one adjust
parameter only, i.e., the low frequency spectral density. Fo
spin-lock field strengths, the experimentalT̂20 spectra are close
to the fitted theoretical curves with a single relative inhom
geneous broadening1ω1/ω1 = 0.12. The optimized spin-lock
frequencies and spectral densities are collected in Table 5.
low frequency spectral density does not show a systematic
ation, which confirms our conjecture concerning the absenc
dispersion in the corresponding frequency range (0–5 kHz).
thermore, the average valueJ0(0) ≈ J0(λ1) ≈ J0(λ2) = 285±
20 s−1 agrees within experimental error with the value o
tained with a strong spin-lock field without coherence trans

FIG. 11. Experimental sections (dots) alongF1 of the selectively detected

quadrupolar spin polarization̂T20 for various relative RF field strengthsω1/ωQ

as indicated in the figure. The solid lines represent simplex fits. To avoid over
the spectra are shifted upward with an increment of 4 units.
REL ET AL.
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TABLE 5
Parameters Resulting from the Simplex Fit to the Selectively

Detected Spin Polarization T̂20 Spectra (ωQ/2¼= 550 Hz, J1 =
130 s¡1, J2 = 110 s¡1)

ω1/ωQ J0(0)= J0(λ1) = J0(λ2)(s−1) RF−(s−1) AF− RF+(s−1) AF+

0.37 324 380 0.15 487 0.26
0.52 283 405 0.36 496 0.09
0.68 256 392 0.42 513 −0.01
0.84 272 391 0.40 552 −0.03
1.08 277 385 0.35 577 −0.05
1.33 302 396 0.31 609 −0.06
2.00 295 385 0.22 613 −0.05
2.56 279 372 0.17 603 −0.04

[ J0(2ω1) = 310 s−1 for ω1/2π = 5 kHz]. Table 5 also includes
the amplitudes and rates of both fast modes resulting from
fit. With limited RF power, the central resonance becomes tr
bimodal and a fit to a single Lorentzian is clearly not sufficien

The spectra pertaining to thêT22(s) and T̂33(a) coherences
are less eligible to extract the dynamic information, becau
they are characterized by a rather small intensity [T̂22(s)] or a
prominent narrow component [T̂33(a)]. In the fit of the latter
two spectra, the low frequency spectral density was kept fix
at the average value 285 s−1, whereas the spin-lock strengt
and inhomogeneity were optimized. As displayed in Fig. 1
excellent agreement between the fitted and experimental l
shapes is obtained with the same parameters as derived from
T̂20 spectra.

CONCLUSIONS

We derived analytic solutions to the previously deduced m
ter equation describing the evolution of the spin quantum num
I = 3/2 density operator in the presence of a RF field and b
static and fluctuating quadrupolar interactions (16). In partic-
ular, the presence of a nonzero average electric field grad
has important consequences for the spin dynamics. The spe
resulting from Fourier transformation of the evolutions of th
on-resonance spin-locked magnetization into the various co
ences display two satellite pairs and, in some cases, a central
From the approximate solutions, it results that the central line
generally trimodal, consisting of a narrow component related
a slowly relaxing mode and two broad components pertaining
two faster relaxing modes. Neither the amplitude nor the wid
of the narrow component is affected by the magnitude of
static coupling, whereas the characteristics of the broad co
ponents depend in a rather complicated manner on the rela
spin-lock field strength with respect to the static quadrupolar
teraction. One of the promising emerging features is the fact t
the evolutions into the central lines of the selectively detec
lap,

quadrupolar order and the rank-two double-quantum coherence
do not exhibit a slow mode and are particularly sensitive to slow
molecular motion. Furthermore, these coherences can only be
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excited in the presence of a static coupling and this make
possible to discern nuclei in anisotropic from those in isotro
environment. The feasibility of the (coherence transfer) sp
lock experiments to extract dynamic information with limite
RF power and a static quadrupolar interaction has been dem
strated through experiments on sodium in a dense, cholest
DNA liquid crystal.

The present work may be consequential for at least three
ferent experimental NMR methodologies. The first is the clas
cal problem on how to extract the spectral densities from a var
of relaxation experiments and how to detect slow molecular m
tions in soft condensed matter. In our experimental example
confirmed the absence of fluctuations in the kHz range, si
the derived spectral densities comply with a slow correlat
time 7 ns (2). A second issue is the monitoring of spinI = 3/2
nuclei in an anisotropic environment via the spin-lock expe
ment, through the selective detection of either the quadrup
order or rank-two double-quantum coherence. These cohere
are only created during the spin-lock time if there is a resid
quadrupolar coupling in the sample, and if the applied sp
lock field has a comparable strength to this coupling. Since
method does not rely upon a flip angle effect for suppress
of unwanted signal components, it may be desirable over
conventional DQ-MA filter (5, 19, 20). Finally, the magnitud
of the sodium signal filtered through the quadrupolar orde
comparable to the magnitude obtained with a triple-quant
filter. The triple-quantum filter is however particularly sensitiv
to ions involved in slow motion, irrespective the presence o
static, possibly hidden, quadrupolar coupling. If implement
in an imaging application, the further selectivity and sensitiv
of the spin-lock filtering technique to sodium ions in anordered
environment might prove to be a valuable tool for the diagn
sis of different diseases associated with loss of ordering of
sodium ions (18). Since in biological media the static quadrup
lar splittings are rather small (<1 kHz), the RF power deposit
in such an experiment would be minimal.
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