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We have derived approximate analytic solutions to the master
equation describing the evolution of the spin | =3/2 density op-
erator in the presence of a radio-frequency (RF) field and both
static and fluctuating quadrupolar interactions. Spectra resulting
from Fourier transformation of the evolutions of the on-resonance
spin-locked magnetization into the various coherences display two
satellite pairs and, in some cases, a central line. The central line
is generally trimodal, consisting of a narrow component related to
a slowly relaxing mode and two broad components pertaining to
two faster relaxing modes. The rates of the fast modes are sensitive
to slow molecular motion. Neither the amplitude nor the width of
the narrow component is affected by the magnitude of the static
coupling, whereas the corresponding features of the broad com-
ponents depend in a rather complicated manner on the spin-lock
field strength and static quadrupolar interaction. Under certain ex-
perimental conditions, the dependencies of the amplitudes on the
dynamics are seen to vanish and the relaxation rates reduce to rela-
tively simple expressions. One of the promising emerging features is
the fact that the evolutions into the selectively detected quadrupolar
spin polarization order and the rank-two double-quantum coher-
ence do not exhibit a slowly relaxing mode and are particularly sen-
sitive to slow molecular motion. Furthermore, these coherences can
only be excited in the presence of a static coupling and this makes
it possible to discern nuclei in anisotropic from those in isotropic
environment. The feasibility of the spin-lock pulse sequences with
limited RF power and a nonvanishing average electric field gradient
has been demonstrated through experiments on sodium in a dense
lyotropic DNA liquid crystal. ¢ 2001 Academic Press
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INTRODUCTION

probes, the naturally occurring spin quantum numbenguiclei

“Li, °Na,%%K, 87Rb, 3°Cl, 81Br, and'3!Xe constitute an impor-
tant class, for which the spin dynamics can be solved in close
analytical form 8-10). The magnetic relaxation of these nuclei
provides a mechanism to extract information about molecula
motions (11). Longitudinal relaxation gives information about
relatively fast motions, whereas slow dynamics is probed mor
efficiently by applying a lock through an on-resonance radic
frequency (RF) field. In previous works, one of us has analyze
the relaxation of a system of spin=3/2 under (pulsed) spin
locking, which allows to sample the spectral density of the fluc-
tuating quadrupolar interactions at a frequency of the order ©
the RF field strengthl2—14). The formerly derived formalism
is strictly valid however for nuclei in an isotropic environment,
where the nuclei experience a zero average electric field grad
ent. In many important systems, including biological tissue anc
lyotropic liquid crystals, the quadrupolar interaction is not com-
pletely averaged by molecular motion in times less than the in
verse Larmor frequency and the NMR spectra display a residua
possibly hidden, quadrupolar splitting. Accordingly, to extend
the range of applications to this important class of materials, i
is necessary to include the static quadrupolar Hamiltonian in th
calculation of the destiny of the density operator in the presenc
of a RF field.

A second motivation to consider the effects of relaxation dur-
ing RF excitation originates from the increasing importance o
sodium MRI in whole body scanner$g). In particular, the use
of triple-quantum filtered images over a relatively large field of
view (>15 cm) requires rather longr(2) RF pulses on the or-
der of 0.5 ms. In previous work, the unwanted signal loss during
such long RF pulses was predicted with a model for the dy
namics of spin = 3/2 in biological media (16 Following the
formalism for spinl =1 nuclei (L7), we have derived the dif-

Quadrupolar spin probes are becoming increasingly importdatential equations describing the evolution of the dpia3/2
inawide range of applications from the investigation of soft comensity operator in the presence of a RF field and both stati

densed matter such as (bio)polymers in the liquid sthtel),

and fluctuating quadrupolar interactions. These equations wel

through biological fluids (5), to the diagnosis of pathology isubsequently numerically integrated to successfully predict th
humansria MRI (6). Another application is the study of surfaceexperimental 15% signal loss in the triple-quantum filtered spec
properties of porous materials with xenon-131L @mong those tra of a piece of bovine nasal cartilage when theiRRF pulse
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width was increased from 0.1 to 0.5 ms (the flip-angle was kegiadrupolar interaction Hamiltoniasg(t) is given by the mas-
constant with a concurrent decrease in RF power). Although ttez equation (22)

differential equations are readily amenable by numeric meth-

ods, approximate analytic solutions under certain simplifying do* e s .

assumptions might be convenient for a general understanding T —i[Hs, 0" + f(07) [1]
of the spin dynamics. Apart from their relevance in the context

of extracting the spectral densities of the fluctuating quadrupwith the Redfield relaxation superoperator

lar interaction, these approximate solutions might also facili-

tate the optimization of the MR imaging techniques to selec- 00
t|vel_y detect ions involved in slow motion and/or in anisotropig (o*) = — f ([HSF(t)a [e*'Hsf HSF(t — 7)eMst, U*(t)m dr
environment.

A third possible use of applying a RF field during more ex- °

tended time-intervals comes from the need to discern differ- [2]

ent pools (e.g., intra- versus extra-cellular) of ions in biological

systems. For instance, it has been suggested that certain patffe the presence of the static Hamiltontd&in the relaxation
logic conditions (such as cartilage degenerative diseases) cof@dtribution, which cannot be neglectedif does not commute
late well to changes in the spectra of sodium ions involved With HSg(t).

slow motion (L8). Several methods have been proposed to de-We express the density operator and the Hamiltonians ir
tect sodium ions in an anisotropic environment. Among thos€'ms of irreducible tensor operato@3j. Symmetric and anti-
the most common methods are the double-quantum magic 84mmetric combinations are defined as

gle (DQ-MA) filter and the Jeener—Broekaert sequertGel 9,

20). We will show here that quadrupolar spin polarization or- Tim(S) = 1/vV2(T—m + Tim)
der, as well as rank-two double-quantum coherences are ex- [3]
cited in the presence of a RF field, provided the amplitude Tim(@) = 1/v2(Ti—m — Tim)-

of the spin lock field is on the same order of magnitude
as the residual quadrupolar coupling. Accordingly, the sele@rthonormal tensor operatoiis,, are also introduced, which
tive detection of the quadrupolar polarization or the rank- twkulflllthe orthogonality relatlonshlﬂ'r{T”ﬂTI iy} = 817 8mm With
double-quantum coherence after applying a RF lock is prmm_( nym T m. The unittensors are related to th&jx coun-
posed to be an alternative MRI filtering technique for morterparts according t®m = & Tim. For spinl = 3/2, the coeffi-
itoring ordered ions in, e.g., human skeletal muscle or bradientsa have the valuesg=1/2,a;, =1/+/5, a, = 1/2/2/3,
in vivo (21). and az=1/3y/2. Symmetric and anti-symmetric combina-
The outline of this paper is as follows. First, we willtions of the unit tensors are defined analogously to Eq. [3]
reiterate the necessary differential equations describing fiiee density operator is expanded in 16 basis operafoss:
time-evolution of the density operator. These equations are s{ire identity), T1o (longitudinal magnetization)'fll(a) and
sequently solved without relaxation effects to provide for a ret-14(s) (proportional to thex- and y-magnetization, respec-
erence in the perturbation analysis of the lineshapes. Aftetieely), T o (quadrupolar spin poIarlzat|on721(s) andT21(a)
discussion of the fast relaxing modes, which are most sengank-two single-quantum coherencesjs»(s) and T,x(a)
tive to slow molecular motion, we will present some practicgtank-two double-quantum coherenced), (octopolar spin
considerations how to selectively detect the various coherengasiarization) Tau(s) andfal(a) (rank-three single-quantum co-
Finally, the feasibility of the various pulse sequences is demdmarences)ng(s) and ng(a) (rank-three double-quantum co-
strated with some experiments on sodium in a dense lyotropierences) and s3(s) and T33(a) (rank-three triple-quantum

DNA liquid crystal. coherences).
With respect to the Larmor frequency-rotating frame, the
DIFFERENTIAL EQUATIONS Zeeman HamiltonianH; = wgl, = wpT1g) vanishes. The time-

independent Hamiltonian is then given by the sum of the static
The differential equations describing the dynamics of thguadrupolar and RF contributions:
spin | =3/2 density operator in the simultaneous presence of
a static quadrupolar coupling and a RF field have been de- HZ = Hgs+ Hj. [4]
rived and reported in previous work&). For ease of refer-
ence, we sketch the derivation and reiterate the pertinent €ayga static quadrupolar Hamiltonian commutes with the Zeema
tions necessary for an analysis of the spin-lock expenmep;ammoman and takes the form
All calculations are done in the Larmor frequency-rotating
frame, indicated by an asterisk. The time-evolution of the den- 1
sity operator under a static Hamiltonid#g and a fluctuating Hos = éwQ[ =1+ 1)] = wQTZOv [5]
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wherewq denotes the residual quadrupolar interaction paramhe matrices in Egs. [8] and [9] can be diagonalized anc
eter. The latter coupling parameter represents the part of the differential equations can subsequently be integrated i
quadrupolar interaction that persists after motional averagiagalytical form. The resulting time-dependencies of the basi
and is not to be confused with the root mean-square-averag®pérators have been set out by Campoéeéil. (25). The matrix
the fluctuating part. With the RF field applied exactly on resn Eq. [8] has a three-dimensional null space spanned by thre
onance along th& axis with field strengthw; = —y B;, the eigenvectors with eigenvalues being equal to zero. Furthermor
corresponding Hamiltonian reads the remaining eigenvalues

) R 2
HE = aaly = VBor T 1(a). 6] = #1yuf + 2o + 40 [10]

+ido = :I:i\/a)é — 2w10q + 4(1)%

The zero-average fluctuating quadrupolar interaction can be ex-

pressed as are imaginary and correspond to two sets of resonance freque
cies, each set with equal magnitude but opposite signs. Accort

2 . ingly, spectra resulting from Fourier transformation of the time

Hae(t) = Cq Z (=) Tom€™ ' [Fo_m(t) — (F2_m)]. [7]  dependencies of the operators in Eq. [8] display a central res:
m=-2 nance and two satellite pairs related to the zero and imaginal

eigenvalues, respectively (as will be shown below, the spectr
Here,Cq = VBeQ/(21 (21 — 1)) = eQ/(hvB) (Q is the pertair_ﬂng to theTl 21(S) andTaz(a_) coherences _shpw two satel-
quadrupolar moment of the nucleus, the other symbols hdif§ Pairs only and no central line). The matrix in Eq. [9] has
their usual meaning), the electric field gradient tensor compglght imaginary eigenvalues
nents, Fom, are defined elsewher@4), and(F,n) represents

their average value. +idg = =i (w1 + 1/\/5\/(1)6 + 402 + A1)2)
With the commutation relation®28) and neglecting relax-
ation, Eq. [1] reduces to two sets of coupled differential equa- +idg = +i (w1 + 1/\/5\/a% + 4w — A1h2)

tions. The firstis

T1(a) 0 0 iv3Bwg O 0 0 0 Tu(a)
T2 0 0 —iv3w O 0 0 0 Ta0
| Tm(s) iV3/Bwo V3w, 0 —iwy iv2/Bwo 0 0 TZl(S)
at Ta(s) | = 0 0 —iwy 0 0 iwg 0 T22(S) [8]
T21(2) 0 0 iy2/Bwg O 0 —i/5/2w1 0 T21(2)
T3x(a) 0 0 0  iwg —iv52w1 0  —iy32w || Ta(a)
Tas(a) 0 0 0 0 0  —iV32m 0 T33(2)
and for the second set one has
T1o 0 —iw 0 0 0 0 0 0 T1o
T11(5) —iw1 0  iy3Bwg O 0 0 0 0 T11(s)
Tx(@) 0 iV3Bwg 0 —iw1 0 iy2/50q 0 0 T21(a)
d | o) 0 0 —iwg O 0 0 iwo 0 T22(a)
dt| 4 | | © 0 0 0 0 —iv6o 0 0 a0 ol
T31(9) 0 0  iv2/Bwg 0 —iv6w 0  —i52m 0 Ta(9)
T32(9) 0 0 0 iwg 0 —iy52w1 0  —iy320 || Tas)
T 23(9) 0 0 0 0 0 0 —iy32w 0 T33(9)
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) ) 5 5 The time-independent Hamiltoniads can however be negl-
+its = £i (w1 — 1/\/5\/‘% + 40 + akz) ected in the relaxation terms proportional to the spectral densitie
at approximately one and two times the Larmor frequency. This
Fide = i (w1 — 1/\/5\/0% + 4wf — Aiha) [11] isbecauseyisgenerally much largerthan any ofthe frequencies
A and, henceJn(mMwo £ Aj) & In(Mwg) = Iy, for m==+1 and
and the corresponding spectra show 4 satellite pairs and no c&f: 11€m =0 term in the relaxation contribution is sensetive
tral resonance. to slpyvly fluctuating glectrlc field gradlents,. alh% has now
explicitly to be taken into acount. The resulting time-evolution
of the density matrix under relaxation takes on the form)(16

T1(a) 3/10D + J; +2/5% 0 0 —/15/10E V6/10D — v/6/53, 0 0 T1()
T 3./5/10A 23+ 2% 0 V/3/2B +/30/10A 0 0 T
T21(s) 0 0 3/2G + J + 2%, 0 0 3/2F 0 T21(9)
% Tols) | = - 3/15/10F 0 0 32G+2h + % 3/10/10F 0 0 T 22(9)
Ta(@) 3V6/201 — /6/5J, 0 0 3/10/200 3/100 + J; +3/53; 0 0 Ta(@)
Ta2(a) 0 0 3/2F 0 0 32G + &, 0 Ta(a)
Tas(a) 3v/10/208 0 0 VB/4A V15/108 0 q+ %/ \Ta@
[13]
and
T10 2/53,+8/5% 0 V15/10A 0 4/53, — 4/5J, 0 V15/58 0 T10
T1(s) 0 3/10C + & +2/5, 0 —v15/10A 0 V6/10C — /6/53; 0 0 T1(s)
T2(a) 0 0 32G + J1 +2) 0 0 0 0 0 T2(a)
d | T2 0 0 0 32G+2%+ 0 0 0 0 T2(a)
dt| T |~ | 450 —4/5% 0 VI5/5A 0 8/53 +2/5 0 _JI5/18 0 T |
Tau(s) 0 3./6/20H — \/6/53; 0 3,/10/20A 0 3/10H + J; +3/51, 0 0 Ta(s)
Ta2(s) 0 0 0 0 0 0 32G+ J, 0 Ta2(s)
Taa(s) 0 3./10/208 0 V6/4A 0 V15/108 0 J+ X/ \Tass)
[14]

The coefficientsA throughJ are linear combinations of the
Relaxation effects can be incorporated into the differentigpectral densities at frequencigs, A, and zero:Jo(k1) =
equations through the addition of the relaxation contributiog),, Jy(x,) = J,», andJy(0) = Jo, respectively. The coefficients
to the master equation. This contribution has been deriveddfthese combinations are collected in Table 1. The frequencie
previous work, including the effect of the static Hamiltonian ial andx, are related to both the residual quadrupolar coupling
the relaxation superoperatdt6). The relaxation contribution and the (tunable) RF field strength according to Eq. [10]. Due
reduces to a combination of the spectral densilignwo +4i)  to the presence of the RF field, the invariance of the spin syster
atanumber of frequenci@swo+; withm = 0,+1,+2andk  under a rotation about theaxis is lifted. This results in a dif-
given by Egs. [10] and [11]. The imaginary part of the spectrgdrent relaxation behavior of the symmetric and anti-symmetric
density function results in very small, second-order, frequeng@nhsor combinations. In the absence of a low frequency dispe
shifts and in a weak coupling of the two sets of differential equaion, i.e., whenl(0) ~ Jo(r1) &~ Jo(r2) = Jo, thewq andw;
tions. These dynamic frequency shifts are commonly ignoregependencies in the rates Egs. [13] and [14] vanish and the m:
The real part of the spectral density is defined as the (cosimgges reduce to the much simpler forms in termsgf;, andJ,
Fourier transform of the electric field gradient correlatiognly and are listed in Ref16). Without RF, thevg dependence

function. in the rates vanishes, because the static quadrupolar Hamilt
o nian Eg. [5] commutes with then = 0 term in the fluctuating
o) (ig>z1 /([F* ©) — (2] guadrupolar Hamiltonian Eq. [7].
M= =AU n) 2 2m 2m The total time-dependence of the basis operators is given b
- the sums of Egs. [8] and [13], and Eqgs. [9] and [14]. These twc

x [Fom(t — 1) — (Fom)]) explwt)dT.  [12] sets of equations evolve independently, but they are coupled
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TABLE 1
Coefficients in Egs. [13] and [14] in Terms of the Spectral
Densities Jy ( 1), Jo ( 2), and Jo (0)

VAN DER MAAREL ET AL.

pulse followed by a spin-lock pulse with field strendghalong
thex axis (some experimental considerations are given below’
The first set of coupled differential equations (i.e., the sum o

Egs. [8] and [13]) containd 1;(a) and is hence relevant for a

Jo (A1) Jo (22) Jo (0) - . : X
o 0 ° description of the spin-lock experiment. We will now analyze
p p p y
A @ileg+o) w1(0g — 1) - 2w1wQ(wg + 2w§) the corresponding eigensystem an.d th*e resulting time-evolutio
Tz Tz T onE of T11(a) under the static HamiltoniaHZ only.
2w2<w2 - 4w2) Without relaxation, the time-evolution of the relevant subset
g _oaleoten) w1lwg — ) S of the density operator is given by Eq. [8]. The seven eigenvalue
M 2 MAs and eigenoperators of the matrix are, respectively (16),
c - wl(wQ — 2&)1) wl(wQ + 2w1) 2(“’?) + 8(‘4)
22 22 22).2 5 w? . 3w~ n
' ’ slpon s 0 A= \/j—lell(a)+\/j—T22(s)+T33(a)
D wl(wQ + 4w1) _ wl(wQ —4w) sz <wQ + Zwl) 2 wQ 2 wQ
i3 3 %3 P -
. ~ w1 -~ ~
wi(wg + 4an) w1(0q — 4w1) 2w0Q (“% - 4“%) 0 A= 12 - \/j Tu@) + \/j 2T 55(9) + Ta1(a)
E 32 52 - 32,2 \/éwQ 3 2wq
1 2 172
w? w? 4wdwq
F 2 2 TR 0 A= \/5—3 T11(a) + T2 [15]
1 2
w? w? 2 wQ + a)le + 4o
G 22 22 3 2223 2 25
. _ ®Q =+ S 12
H w1(wq + 3w1) _ w1(wg — 3e1) 2 Za)Q + 505 0] — 4of Firr Apa= \/;w_lTll(a) - V2T 20F \/;w_szl(s)
22 23 3|
2 1 2
| _ wi(wg —w1) w1(wq + w1) 2 sz wal + 200 \/7 (1 + —) T22(S) + — (5 + &>
22 22 3| 3 V15 w1
_ 2a0q(wg + 6w ~ 2 A1 A ”
+ 1
g eleesen wrdoq b o) —EZ; ) x Ta(a) = \g —Ts(a) + Tas(a)
1 2 172 1

Q
a change of RF phase. Once the eigenvalues and eigenoperatdre  Ass = f—Tll(a) + V2T 50+ \/7—T21(s)

are known, the time-dependence of each of the basis operators
can be determined. The time-evolution can be solved in analyti- 2 2wq
+ 1—— T22(S)+ 5 —
3 w1 «/_5 w1
. 2 Ao .
x Tai(a) £ \/;—ZTsz(a) + Ta3(a)
w1

cal form in two limiting situations. In the absence of a RF field,
the results are given by, among others, Dinesen and Sanctuary
(26) and one of the present autho2gl). Without quadrupolar
splitting (wg = 0), the relaxation under (pulsed) spin-locking

in the doubly rotating (toggling) tilted frame has been analyzed
in previous work (12-14). In the simultaneous presence of Riith A; andx, given in Eq. [10]. With eigensystem Eq. [15], the
and a static quadrupolar coupling, the master equation cannotip@erturbed time-evolution d?ll(a) takes on the form

solved in analytical form. Although the eigensystems are readily

amenable by numeric methods, approximate analytic solutiofBstf, (a)eHst

under certain simplifying assumptions might be convenient for

an understanding of the spin dynamics. For this purpose, we will= a11(t) T 11(a) + a20(t) T 20 + 821(t) T 21(S) + a2(t) T 22(5)

first analyze the time-dependence of the density operator with-

out relaxation effects in the context of the spin-lock experiment. +861(1) T51(@) + 262(1) T 52(@) + 203(1) T as(a) [16]
The effects of relaxation will subsequently be treated as a first

order, time-independent, perturbation to the static Hamiltoni&hd the coefficients; (t) are set out in Table 2. Spectra re-
HZ (27). sulting from the Fourier transform of the time-evolutions into

the various (indicated) coherences are displayed in Fig. 1
These spectra were calculated by numerically solving Egs. [8
and [13] with the density operator in the initial 11(a)
state and including relaxation effects as detailed below. Thi
InaT,, experiment, the density operator is initially prepared iresonance positions and integrated intensities are given &
afll(a)state (proportional te-magnetization) by aharet(2), the coefficientsa;;(t) in Table 2. In particular, the spectra

UNPERTURBED TIME-DEPENDENCE UNDER THE
STATIC HAMILTONIAN
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TABLE 2
Coefficients Giving the Time-Dependence of T1;(a) under Hg

4 2 2 4
aun(t) 1 4(”Q +4wa1+40w1) L g2 [ CoStat | costat
11 — 1
10 2232 Q| a2 22
2((»2 + 4w2>
ao(t) 3wqw1 Q 1) cosiat _ COosAt
25 2223 22 22
iv/3wo [ siniit  sinist
20 2J§Q ( PR )
2 2
\/§wQ 2an <wQ - 4&)1) (wq + w1)cosrit  (wg — wi) COSALt
a22(t) - 2.2 2 - 2
2V5 A2A3 23 22
2 2
aaa(t) «/§wQ 4wq (wQ - wl) (2wq + 5w1) cosiit  (2wg — Swy) COSALt
" _ _ _
10v/2 2222 22 23
iv3wg [ siniit  siniot
t — —
agy(t) NG ( }\1 o
asa(t) 3wqw1 [ dwgwi . COSAit  COSAot
3 2,2 2,2
210 \ 2213 Py 32
T @ corresponding to thd 11(a), T 20, T22(S), Ta1(a), and T33(a)
1

(kHz)

(kHz)

coherences show a prominent central resonance and tw
satellite pairs at frequencies; and A, respectively (for
fll(a) the intensities of the satellites are negligibly small
with the present parameters). A central resonance is abse
in the signals pertaining td »1(s) and T3p(a), which dis-
play two satellite pairs in anti-phase only. The remaining co-
herences [i.eT 10, T11(S), T21(a), T22(a), T30, T31(S), T32(s),
andT 33(s)] belong to the other subset (with a time-evolution de-
termined by Egs. [9] and [14]) and are irrelevant in the context of
the spin-lock experiment. Furthermore, the Fourier transform:
of the conversions into the latter coherences display four sate
lite pairs only (at frequencies given by Eg. [11]) and no central
line (spectra not shown).

Satellites are liable to line-broadening effects related tc
inhomogeneity inB; field strength and/or a distribution in
static quadrupolar coupling across the sample. Accordingly
the central lines in the spectra pertaining to tha(a), T 2o,
T20(s), Ta1(a), and T33(@) coherences are designated for
relaxation studies. The shapes of these central lines are d
termined by the perturbation of the nullspace of the matrix in
Eq.[8]. The nullspace is spanned by the three eigenoperators
A, and Az with zero eigenvalue (the nullity is 3). As a result
of the perturbation by the relaxation terms, the originally de-
generate eigenvalues cease to be degenerate and the singula

FIG.1. Simulated spectra resulting from the Fourier transform of the ndS rfemoved. The central resonance becomes hence multimod:
merically solved time-evolution Egs. [8] and [13]. The density operator is pré-€., it consists of a sum of Lorentzians with different widths and
pared in aTyi(a) state (proportional tox-magnetization) by an initial hard gmplitudes. The maximum number of modes equals the nullit
(/2)y pulse followed by a 90phase shift. The detected coherences are indg_ The widths and amplitudes follow from the numeric integra-

cated. The spectral densities are calculated with a slow mode correlation ti{’n
wqts=0.1 and root-mean-square coupling constagt=2.5 kHz, together

I6n of the sum of Egs. [8] and [13], but in the next section

with a high frequency contribution = (x2 ¢ )/(x2zs) = 0.1. The other param- We Will derive solutions under the condition that the linewidths
eters arevg /27 =0.75 kHz andvy /27 = 1.5 kHz (a1 /wq = 2).

are much smaller than any of the frequencigsaand A,. This
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condition can always be arranged with a sufficiently intense R€&adily identified with the rates of the operat@s, and A.s,
field strength. We will analyze the relaxation behavior with timerespectively. The relative intensities are given by the result:
independent first-order perturbation theory for a system where Table 2. However, signals originating from the satellites
the unperturbed operator has a discrete spectrum of degenehatee little practical value due to the additional line-broadening
and nondegenerate eigenvalues)(27 effects given byB, field inhomogeneity and/or distribution in
static quadrupolar coupling.

The operatoré\;, A,, and Az are coupled and their degener-
acy is removed by the relaxation contribution. They are howeve

» ) ) decoupled fromAL4 and A, if the central resonance does not
Under the condition that the linewidths are much smaller thafye o with the satellites. The corresponding subset of the ma:

the frequencies; anda., the operators corresponding with thger equation in the operator representation Eq. [15] (the secul:
nonsingular eigenvalues in Eq. [15] are to a very good approglyms) can be diagonalized and subsequently integrated in ar
mation still eigenoperators if the relaxation contribution Eq. Hcﬂ/tical form. For this purpose, one must solve the secular equs
is included. The operatos., and AL oscillate with frequen- tion pertaining to the operator;, A,, andA; to determine the

cies£A; and +1o, respectively, and are decoupled and rela¥igenyalues (relaxation rates) and to calculate the correspondi
independently from any other eigenoperator. For these decE%

PERTURBATION ANALYSIS OF THE LINE-SHAPES

! X jenoperators in the first approximatid®vj. After some te-
pled operators, the relaxation rates are given by the real parigl ;s pyt straightforward, algebra, the resulting rates and eige

operators take on the form

1,
RS

5
I+ Bs=—\/;A1+A2

Iy
RE: = PFVQ2+r2

B _ 7i (w‘(‘2 + wéw% + 4(0‘1‘) r 4 Atho (a)% - w%) Vo2 +r2 At i 2hAowqwid — (a)‘é + 3wfwé - 4w‘1‘) I FA1Ao (wzQ + u)f) Vo2 +r? Ao+ A

i V2 Ao (a)%2 — wf) q-+ 6wa§r 10 A1Ao (a)é - w%) q+ Gwafr

(18]
with
2 3(w? + 20Pw? + 8a?
_ 3(1)1 'J)Lz 4 ‘Jll i 3.] n Q 1%°Q 1 3 _ 3(()% \];\2 ‘]?»1 4(1)QL()1 3

P=2 |2 ) 2™ 2222 2 9=z T T T

, _ (0g — 20n)(wg + 2u1) [19]

J J).
T (h+ %)

In general, the central resonance shows a slow mode and tv
the diagonal elements of the master equation in the (appreXster modes with rateRg’ and Ry”_, respectively, because the
imate) eigenoperator representation Eq. [15] (the imaginagjectral densities decrease in magnitude according to the ord
part gives the frequencies). These real parts of the diagoggzl > J, > Ji > J. The relative contributions (amplitudes)
elements read of the respective modes are determined by the eigenoperatc

Bs and B;. The fast ratesRﬁ" and the corresponding eigen-
(g +w1)? 302 20} +4wqwr +11af operatorsB1.depend on the ratio of the spin-lock field ;trer_mgth
Asg: TJoJr WJM +Jdi+ 232 > and the static quadrupolar coupling/wq. Slow dynamics is
! , 2 , ! probed by the fast modes, because the r&s are sensitive
Auc: (wq —w1) ot Swy It 20 —Awqwi +110f 3 the spectral densitied; = Jo(r1) and J,» = Jo(r2) [note
23 235 215 that they are insensitive tiy(0)]. The slow relaxation rat&g’
[17] is sensitive to }he high frequency contributiohsand J, only.

FurthermoreRs” and the corresponding eigenoperagr(i.e.,

the relevant combination oA; and A;) are insensitive to the
The rates of the satellite pairs at frequencigs and+A; are relative strengths of the static interactions.
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TABLE 3
Amplitudes in the Relaxation Functions of the Central Resonance Eq. [21]
As Arx
au(®) 1 1 wé + 4a)2Qw§ + 64aff N Ga%wlq (0q + 4w1)(wg — dwn)r
11 = 1A
5 10 2233 2212/q2 +12 Ar2/qZ +12

2 2 4 2 2 4
920(t) 0 ! |:3wow1<wQ + 4w1> + ( <wQ  2wger t 16%)q Swquar )}

2.5 2223 A2A3/q2 + 12 e 112

_ 0 V3 a)le(a% - 4w%) N 2a)§<wé + Bw%)q N wowT
22 -——
2V5 A3 WBBJR 12 a2
(w4 — Bwiw? — 16 4) wow <w2 +20w§>q <w2 +4w2>r
§ - V3 V3 Q”P¥gra— ber) [ @@y L \wotael
Oa1 52 1042 2223 222,/q2 +12 Ahoy/ Q2 + 12
1 1 [ — 20807 + 1608 [ Boqui(0d +4e2)q 2 2
gaa(t) _ Q Q%1 oy + Q (a)Q + wl)(wQ — wl)r
V10 210 A%k% )L%)\‘g /92 +r2 AAoy/Q2 + 12

The conversion off 15(a) into the central resonance of theresonance. As in the case B, the amplitude of the slow
various coherences takes on the form [in the arrow notatio)j ( mode does not depend on the spin-lock field strength or thi
value of the static quadrupolar coupling. This is because th

T11(@) = gua(®)T12(a) + Goo(t) T 20 + Goo(t) T 22(5) corresponding eigenoperat®s is insensitive to these static
R ~ interactions. For the fast modes, the amplitudes depend on tt
+ 9a1(t) T31(a) + gsa(t) Tas(a), [20]  ratiow;/wq as well as the spectral densities through the param
etergg andr. Inthe limitqg — 0 and/or — 0 the dependencies
with the real (nonoscillating) relaxation functions of the amplitudes on the spectral densities are seen to vanis
and the expressions are considerably simplified. These limiting
gij(t) = As exp{— Ré”t} + Ar- exp{— R;l:p_t} situations correspond to some specific experimental condition:

According to Eq. [19], the limit — O is realized when the
high frequency spectral densitids and J, dwindle and/or if

] ] w1 = wg/2. Varying the RF field strength can always fulfill the
The factors (amplitudeshs and A are calculated with the |agter condition, but the matching can become problematic ir

eigenoperators in Eq. [18] and have been set outin Table 3. Thg face ofB, inhomogeneity. The former situation is difficult
time evolution of the other operators, pertaining to differeRg achieve because the high frequency spectral densities c:

initial states of the density operator, can analogously be derivedya|ly not be neglected. Far = wo/2, the fast rates read
For each coherence, it was checked that the sum of the ampli-

tudes of the slow and the fast modes (i.e., the integrated intensity 3 5

; P
of the central resonance) agrees with the relevant terms FB,J;_ = ZJ,\1+§J1+ZJ2
Table 2. Itisinteresting that the conversions into the quadrupolar (1= w0/2, Ay = 233wy, Ay = 2m7)
spin polarizatioriT ;o and the rank-two double-quantum coher1, _ §J +§J 433 [22]
enceT »,(s) are bimodal, i.egao(t) andgy(t) do not exhibita ~ F+— 4™*2 " 271742
slow mode @As = 0). Furthermore, as will be discussed below,
the latter two coherences are only excited if the ratigwg is and the amplitudes are set out in Table 4. Both fast relaxatiol
of the order of unity. These features are particularly promisingtes are accessible, due to the nonzero and fixed values of t
from an experimental point of view, because these coherenemsplitudes. The resulting lineshapes have a relatively simpl
are only excited in the presence of a static quadrupolar coupliftgm and are suitable for fitting (although the condition =
and bimodal lineshapes are easier to analyze than a trimodal/2 limits the range of applicability).

+ Ar exp{— Ré’jrt}. [21]



306 VAN DER MAAREL ET AL.

TABLE 4
Amplitudes of the Fast Modes in the Relaxation Functions of the
Central Resonance Eg. [21] in Some Specific Situations

Rﬁ’i equals the expression faé” (see Eq. [18]) and, hence, the
difference in slow and fast modes has disappeared (the relaxati
functions are monoexponential). As far as the central resonanc

w1 < 0Q w1 = wo/2 w1 > 0g is concerned, onlﬁ'u(a) and fgl(a) single-quantum coher-
(9=0) (r=0) @=0) ences are excited and the signal contributions pertaining to th
Ar_ Ars Ar_ Arg Ar_ Ar,  zero-and multi-quantum coherences are seen to vahig(e) is

no longer created becaudg+ Ar_ = 0). This behavior agrees

1 3 1 4 ; i ! . .
g1a(t) G 0 0 0 5 0 with the previously derived results for sgin= 3/2in anonzero
average electric field gradient without spin-lock field (24).
3 1 :
g2o(t) 0 0 — — 0 0 In the general case, the rates of the fast modes are given |
45 45 the rather complicated results given in Egs. [18]-[21] with the
42alt) 0 0 V3 V3 0 o  amplitudes collected in Table 3. In the next section we will
45 45 compare the approximate analytic solutions with the solution:
V3 V3 33 V3 obtained from the numeric diagonalization and subsequer
9a1(t) 52 0 " 2002 2002 5/2 0 integration of the first set of coupled differential equations (i.e.
1 3 1 1 the sum of Egs. [8] and [13]). Furthermore, we will show the
©n -——= 0 -—— — = 0 behavior of the fast modes for a specific form of the spectra
o J10 /0 /10 /1o

density function with various correlation times and/or high
frequency contributions.

The other simplifying situatioq — O corresponds with the
two limiting experimental conditions; > wg andw; K wg. THE FAST MODES
In the former limit, the RF field strength far exceeds the static : L .
For afurther analysis of the fast modes, itis necessary to intrc

quadrupolar coupling and the frequencies collapse to the same o : ) . )
valueis — i, — 2, (the subsesy, Ay, andAs is still decou- e a specific form of the spectral density function. In biopoly

. er solutions there are often several independent processes
pled from any othey,). The corresponding rates of the f"J‘S{(Tiﬁ‘erenttime scales causing the loss of correlatiyri(). Here,
modes now take on the values

we will assume that there are two correlation times, a very shol
3 1 im nd a longer timers. The longer correlation time i
Rép_:_JMJFJlJF_JZ time tr and a longer times. The longer correlation time is

4 4 o associated with slow fluctuations in the (ordered) environmen

(01> wag, A1 = 2 = 2w1) ) ,

1, 3 due to, e.g., rearrangements of relatively large macromoleculz
R, = Z‘]*z +2J + Z‘]Z [23] segments. The other very short correlation time is related to th

dynamics of surrounding water molecules and/or other sma
and the amplitudes are also collected in Table 4. TheRie i0ns, which typically occurs on a 1& s time scale. Accord--
is however inaccessible, because, = 0 for all coherences. ingly, the fast process is taken to be in the extreme narrowin
For such strong RF field, thﬁgo andfzz(s) coherences are no limit wete K 1 With a biexponential correlation function, the
longer excited and the central resonance of the other relevRgctral density reads
coherences is now bimodal. In particular, outside the extreme

narrowing limit, T35(a) and triple-quantuni 33(a) coherences In(@) = (2n)? ( x&ts 4 ZTF>

are created, despite the vanishing small static quadrupolar cou- " 20 \1+ 0?7 F

pling with respect to the RF field strength. These results are (27)%2 1 [25]
in complete agreement with previous results derived under the — L) Xsts ( 5 > ,

neglect of a static quadrupolar couplingg = 0) in the doubly 20 1+ w?tg

rotating tilted frame (12-14). .

For very weak RF irradiatiom; < wo, A1 = A2 = wg, ONe where xs and xg denote the root—mean—squarg coupling con-
essentially spin-locks the central transition and the relaxatigfts Of the slow and fast process, respectively. We beliey
rates are no longer sensitive to the low frequency spectf3ft this form of the spectral density function captures mos

densities: of the specific effects, which may be encountered in experi
mental studies. The relative importance of the fast process (i.€
R]';/i —h+d the hig? frequincy contribution) is expressed by the paramete
10 (w1 € wg, A1 = A2 = wQ). [24] o= (xgTe)/(x5Ts)- ) o
R, =20 +2 The fast rates are displayed ¥g/wq in Fig. 2 for a num-

ber of scaled slow correlation times,ts. The rates are scaled
According to the values of the amplitudes in Table 4, the only aby Jy and are hence in dimensionless units. Here, there is n
cessible rate iﬁeé’i (Ar+ = 0). Furthermore, the expression fothigh frequency contribution to the spectral density=£ 0). It
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FIG.2. Relaxation rates of the fast modes Eq. [18] scaleddws the rela-
tive RF field strengtlw; /wq. The symbols refer to the scaled correlation times:
circles,wqrs=1; upper trianglespgrs=0.1; lower trianglespqrs=0.01,
and squaresypgts=0.001. Open and closed symbols denaﬁéi and Ré’i,
respectively. There is no high frequency contribution to the spectral density
(x=0).

was checked that the approximate solutions resulting from the 10 10 10
perturbation treatment Eqgs. [18] and [19] are indiscernible from /04
the rates obtained from the numerically solved time-evolution
Egs. [8] and [13] (the satellites do not overlap with the cen-FIG.3. Asin Fig. 2, but for a fixed scaled correlation titagrs=0.1 and
tral resonance). If the high frequency contribution is negligibléi,gh frequency contributions to the spectral density: upper triangles).01;
the rates vary with increasing RF field strength according [gver tranglese =0.1; squaresy = 1; and diamondsy = 10.
3w}/A231 and 3¢§/333,2 for RE”. and R, respectively. For
stronger RF field strengths, the rates display a maximum and 0.4
eventually level off at 34Jy(2w;) . The position of the maxi-
mum depends on the value of the correlation time. However, the
RF field strength dependence of the fast rates becomes far more
complicated if the high frequency contribution to the spectral
density cannot be neglected.

The importance of the spectral density at high frequencies,
as expressed by the paramederis illustrated in Fig. 3. Note
that the actual value of the Larmor frequency is irrelevant, be-
cause the fast relaxation process is assumed to be in the extreme
narrowing limit (ap7e <« 1). The rates (scaled by) are dis-
played vswi/wq for a fixed slow correlation timegts = 0.1.
As for the amplitudes (see below), the perturbation results agree
with the solutions resulting from numeric diagonalization and
integration of the master equation. The high frequency contri-
bution has a dramatic effect on the rates. In particular, when
a exceeds, say, unity, a rather abrupt change is observed at
w1 = wq/2. This is related to the increasing importance of the
parameter (Eq. [19]) with increasing values qf and J,. As
will be discussed below, similar critical behavior is observed in
the amplitudes. The relaxation rates agree with Eqgs. [22], [23],
and [24] for the specific conditions; = wq/2, w1 > wq, and o, /0
w1 K wq, respectively.

The amplitudes of the fast modes are displayetiog in FIG. 4. Amplitudes of the fast modes (top)r- and (bottom)Ar_ in the
Figs. 4-8 fOfa)Q‘Cs — 0.1 and a number of values af With a cent!'al resonance compqnent _of the(a) coherencggll_(t)] vs the relative

. . . RF field strengthw; /wq with a fixed scaled correlation timegts =0.1. The

shorter scaled slow correlation tlm'Q?TSv the amp“tUdeS take symbols refer to the high frequency contributions to the spectral density: up
their |Im|t|ng values for stronger RF fields (data not ShOWﬂ)}er trianglesq = 0.01; lower trianglesy = 0.1; squaresy = 1; and diamonds,
The general behavior is however similar to the one displayeé- 10.
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FIG.5. Asin Fig. 4, but for theT 2o coh 1)]. o -
sihHg ut for thef 20 coherencegzo(t)] FIG.7. Asin Fig. 4, but for thel 31(a) coherencedsi(t)].

in Figs. 4-8. Accordingly, the amplitudes are rather insenspith the results setoutin Table 4. The two fast modes are only si
tive to the value of the slow correlation time. In contrast, theaultaneously observabledf; /wq equals unity within an order
spectral density at high frequencies has a strong effect, excepmagnitude. For higher RF field strength, the amplitudes tak
for w1 = wq/2, w1 > wq, Or w1 K wq. For the latter settings, their limiting values (Table 4) and the central resonance eithe
the dependencies on the spectral densities vanish, in accordatgashes T 20 and T 25(s)] or becomes bimodal[11(a), T31(a),

0.1 g T

F+

O«

-0.1

-0.1

-0.4 > '0 )
10 10 10 10

FIG.6. Asin Fig. 4, but for thel 55(s) coherencedya(t)]. FIG.8. Asin Fig. 4, but for the‘fgg(a) coherencedss(t)].
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andT 33(a)]. As in the case of the rates, the amplitudes show @ocked T 11(a) coherence converts into
abrupt change at, = wg/2 whena exceeds, say, unity.
Tu(@) = gut)T1@) + gau(t)Tau(@),  [28]
PRACTICAL CONSIDERATIONS
which further evolves into detectable magnetization during the

The general pulse sequence of a spin-lock experiment is givégiection period. With Eq. [27], the directly detected signal take:
by the form

(w/2)p+90 — (B1, t1)p — (B)y — detection,t,  [26] (g, t,) = é[(Sgll(tl) + V/6g31(t1)) cos(antz) exp(—Rstz)

where the final pulse is possibly included for coherence transfer. +(2011(t) — VBga(tr)) exp(—Retz)]- [29]
Note that the filter contains a single transfer pulse only and not

the conventional pulse-pair at the end of the evolution period.Tife T, relaxation of the satellites and central transitiof (f2)

is not necessary to include a mixing pulse, because the multigeteadily identified in the first and the second term on the right
guantum coherences are already excited during the evolutlénd side of Eq. [29], respectively. For the satellites, the ampli
under the lock. An initial (hard) pulse followed by a“9thase tude of the slow modds is seen to vanish in the relevant com-
shift is necessary to prepare the density operator in an initination of the relaxation functions 3g+ +/6gs: (see Table 3).
state belonging to the relevant subset in Egs. [8] and [13]. In th&cordingly, theT; , relaxation of the satellites is bimodal and is
detection period, the relevant single-quantum coherences evcigasitive to the fast modes only. Finally, the higher rank contri-

into (detectable] 11(a) coherence according to (24) bqtions are seen to vanis_h if one records the (extr_apolated) an
plitude of the detected signal directly after the spin-lock pulse

R 1 R (t2 — 0), or, alternatively, if one integrates the complete spec-
Ti(a) — 5[3 cos(apty) exp(—Rstz) + 2exp(—Ret2)] T11(a)  trum in the- (wz) domain.
The spin-lock experiment can be optimized to selectively de:

- .13 . - tect the spin polarization quadrupolar ordes,, the double-
Tau(s) — |\/25|n(th2) exp(=Rstz)T1(2) 271 quantum coherencekza(s) and T ax(a), o the triple-quantum
R 1 R coherencel 33(a). The other zero- and multi-quantum coher-
Ta(a) — EJB[COS(aQtz) exp(—Rst2) — exp(—Rct2)] T11(2),  ences belong to the other subset and are irrelevant in the conte

of the spin-lock experiment (they also do not exhibit a central

With Re = Jo+ i + J andR, = J; + J being the transverse line intheF (w1) domain). In particular, the selective detection of

relaxation rates of the satellites and the central resonargcegcg’&ger-{hzeo Icsolrr;teesr;s::S?ng?:rgn?:]ale;(epseor:wrgﬁgéalsi%crjwler;:{(zg{\)/iew,

(without spin-lock field), respectively. It is advisable to dg re bimodal and are sensitive to the fast relaxation modes onl:

two-dimensional (2D) experiments, either with or withouis we will see below, in particular the signal pertainingp is
coherence transfer. A set of spectra is obtained as a function of NP gnaip %

: ) X ) i ost suitable to extract information about the low frequency be:
the spin-lock timd;, after Fourier transformation with respect _ . . . . |
o . . avior of the spectral density function and to selectively detec
to the detection timé,[F (w,) domain]. A phase sensitive 2D _ . - o :
‘ . . spinl = 3/2 nucleiin a nonzero average electric field gradient.
spectrum can now be obtained by taking the real part of this S . !
n the coherence transfer experiments, the final transfer puls

and subsequent Fourier transformation with respect to the spin- . . :
. ) . . o and the various phases should take on the following values:
lock timet;. The signals in thd-(w;1) domain, pertaining to a
certain static quadrupolar interaction, can be selected by takingi) For optimized detection of the spin polarization quadrupo-
a section alongF (1) at the position of the corresponding satellar order T, the final coherence transfer pulse should reac
lite signal in F(w,). This procedure is especially facilitated in8 = 45°. To suppress coherences up to and including order 3
the zero- and double-quantum filtered experiments, becatise phasep is stepped through°060°, 120, 180, 240, and
these signals do not exhibit a central line in fh&v,) domain 300 while the receiver phase is kept at a constant value. Becaus
(see below). of the invariance off 5, with respect to a rotation about ttze
Without final coherence transfer pulse (i.e., in a conventionakis, the value of the phagg of the coherence transfer pulse
spin-lock experiment), the detected signal includeg(a), is irrelevant. Due to imperfections in the preparation pulse anc
le(s), and'fal(a) single-quantum coherences. After 2D Fouriesubsequent 9@hase shift, Zeeman ordegoand octopolar spin
transformation, the central resonance in thév;) domain polarizationf'go may also be excited. Their signal contributions
contains the signal contributions originating froms(a) and can however be suppressed by performing two experiments wit
T31(a). The contribution related td,(s) is transformed into coherence transfer pulse angkes= 45° and 135, respectively,
two satellite pairs in anti-phase iR(w;) and does not con- and subsequent subtraction of the resulting spectra. For a sing
tribute to the central resonance [F(w;)]. Accordingly, the pulse angle, the same effect can be achieved if one takes tf
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difference of the sections at the resonance positions of the t880 Hz. The NMR experiments were done with a Bruker AM-
satellites in the acquisition domain (see below). 200 spectrometer equipped with a 4.7 T wide-bore supercor
(i) Inthe triple-quantum filtration experimem,= 90°. The ducting magnet and a fast recovery preamplifier. A homemad
phasep is also stepped through 060°, 120°, 180, 240, and probe with a solenoid coil was used. To minimize dielectric
300, but the receiver phase should now be alternated betwdwerating due to parasitic capacitance during RF irradiation,
0° and 180. Here, the phas¢’ of the final pulse is set to°Gor Faraday shield (consisting of a set of parallel, isolated, wires
selective detection of 3(a) (the experiment is optimized for was mounted inside the coil and at one side connected to groun
the unwanted 35(s) coherence iy’ = 30°). The sample was contained in a nonspinning 5-mm outer diame
(i) In the double-quantum filtration experiment, the phaster and 1.5-cm length glass tube. The temperature was controlle
¢ is stepped through the value$, ®0°, 180, and 270 with at 273 K with a fluid thermostat using Fluorinert grade FC-40
the receiver phase being alternated betweear@l 180. The (3M Co.). The hards/2) pulse duration was As, whereas the
phaseg’ is set to 45 for selective, simultaneous, detection obpin-lock field intensity was tuned between 0.2 and 5 kHz us
T22(s) and T 35(a) (the other combinations are selectively deing a Bruker BFX-5 low power transmitter. The RF carrier was
tected if¢’ = 0°). A double-quantum filtered 2D spectrum withadjusted exactly on resonance. For each experiment, 128 FIL
optimized pulse anglg = 90° displays two signal contribu- were collected with an incremental spin-lock time 168 A
tions: T2(s) and T3x(a). The latter contribution does not ex-20 Hz Lorentzian line broadening was applied prior to Fourie
hibit a central resonance iR(w1) and is hence irrelevant from transformation with respect to the spin-lock time.
a relaxation analysis point of view. THes(a) coherence con-  Since the static quadrupolar coupling is rather moderate, th
tribution can be suppressed however (at the cost of S/N ratlimhiting situationw;/wg 3> 1 can be achieved for the highest
by decreasing the length of final coherence transfer pulse sasfailable spin-lock field strengthy /27 = 5 kHz. In this situa-
that 8 = arccos(14/3) = 54.7. tion, the conventional , relaxation of the spin-locked magneti-

These phase cycles are possibly supplemented with a phz"Jltlon [T12(2)] is almost biexponential with amplitudes: - =

_ o _ 1o
alternation of the preparation pulse betwep80® and —90° 68/A, = 0.2and rateRy_ = 3/4Jo(2e1) +J1+1/4%, Rs" =

togetherwith an additional 18@lternation of the receiver phase it ‘]2.’ respectively (Tablg 4 gnd Eq. [23] with 2 2e).
. ; . -—."The high frequency contributiords and J, were obtained from
In the experimental section, we will demonstrate the feasibility : )
: n inversion recovery experiment and take the values 130 ar
of these coherence transfer experiments.

1 . , e )
The preparation of the density operator depends on the I%]]:O s, respectively £8). With the present spin-lock field

field strength of the initial pulse in Eq. [26]. A pur%ll(a) strength and sweep width in tive domain (6.06 kHz) the satel-

- . . lites are not observable. The rates were fitted to the data ar
initial state can only be prepared if the effects of relaxation . .

) ) . the low frequency spectral density can now be derived from th
and the static quadrupolar interaction can be neglected dur E

H _ 1 —
a sufficiently hard preparation pulse. If this cannot be realiz*En trelaxing component and realig2e,) = 310 (wn /27 =

. L : Hz).
experimentally, the initial density operator after the phase sh|tInthe resence of a large static auadrupolar counling. the lim
will be in a mixed state including 10, T30, T11(a), T21(S), P 9 q b piing,

T po(S). Ta1(a), T22(a), andT sa(a) coherences. The subseque |%|n_g situationws/wg > 1 can pQSS|ny not be.achleved_ due to
. . imited RF power. The conventiond}, relaxation experiment
relaxation of the central resonance under the RF lock is sli . P .
a now less eligible to extract dynamic information, because th

given by the rates in Egs. [18] and [19], but the amplitudes elaxation functions become trimodal with rather complicatec
the various modes will be different from those collected in Tabr . . . P )
ependencies of the rates and amplitudes on the spin-lock fie

3. Although the amplitudes can be derived analytically, itis I’norset'rength. It is now advisable to monitor the evolutions into the

convenient to calculate them with a numeric integration of the . o <
iﬂln polarization quadrupolar ord@gg or the double-quantum
a

master equation (including the effects of the preparation a . : "
) s) coherences, since these evolutions are sensitive to tt
coherence transfer pulses and the phase-shifts). It was che : . |
Strelaxation rates only and are bimodal. Furthermore, the la

however that under any circumstances the evolutions'i'rztp L _
and T ,,(s) coherences do not exhibit a slow mode and rematlﬁr two coherence; can only be excited in the presence of a sta
bimodal. quadr_u.polar_ couplmg anq, hence, makes it possmle.to d_lscel
nuclei in anisotropic environment from those experiencing ¢
zero average electric field gradient. We will now demonstrate
EXPERIMENT the feasibility of the coherence transfer experiments and inve:
tigate to what extent the low frequency spectral densities can k
Experiments have been done on spin= 3/2 sodium in a obtained with limited RF power as well.

dense (250 mg/ml), cholesteric, liquid crystal of 150 base-pairAn experimental zero-quantum filtered 2D spectrum per-
DNA fragments in water. This system has previously beeninvesining to the T, coherence is shown in Fig. 9. The spec-
tigated with extensive field-dependent longitudinal and transum was recorded with a relatively moderate RF field strengtt
verse relaxation experiment8)( At 273 K, the sodium reso- w1/wg = 0.7. A characteristic satellite pair in anti-phase in

nance shows a moderate static quadrupolar splitigger = F(w2) with a splittingwg /27 = 550 Hz is observed, which is
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QMO

as well the spectral density are optimized. As a first approx:
imation, it is assumed that the inhomogeneous broadening c
the satellites at the frequencies(i = 1,2) is related to thd3;
inhomogeneityAw; according toAw;, = |04 /dw1|Aws. In

the numerical procedure, the satellites were accordingly convc
luted with the relevant broadening factors. Furthermore, it was
assumed that the spectral density shows no dispersion in tf
0-5 kHz range. Accordingly, thé,o spectra were fitted with
four adjustable parameters: an overall factor, a spin-lock fielc
strength, a relative inhomogeneityw; /w;, and the low fre-
quency spectral densityp(0) ~ Jop(r1) ~ Jo(r2). The high
frequency spectral densitidg and J, were fixed at their values

4.5 -0.5 0.5 1.5
F, (kHz)

FIG. 9. Experimental 2D contour spectrum of the selectively detected
quadrupolar ordef 5 in a dense DNA liquid crystal (at 273 K). Experimental
parametersy; /wg = 0.7 andwq /27 = 550 Hz. The absolute value of the spec-
trum is displayed. The feature at the center is due to pulse-phase imperfections.

characteristic of the evolution of rank-two single-quantum co-
herence into observable magnetization during the detection pe-
riod (see Eq. [27], in the figure the phase information is lost, be-
cause the absolute value of spectrum is displayed). Apart from
the central resonance, the spectrum displays the two character-
istic satellite pairs at frequencigs/2x andi,/2x in F(w,) at

the satellite positions ifr (w2) . The positions of the satellites

in F(w1) agree with the spin-lock field strength and the value of
the static quadrupolar coupling.

Figures 10 and 11 display the difference of the sections along
F(w1) at the satellite positions ifr (w;) for a variety of 2D
experimental spectra. In Fig. 10, the experiments were opti-
mizedto selectively detety (asinFig.9), the double-quantum
coherencel 22(8), or the triple-quantum coherenf':g(a) with
a fixed value of the spin-lock field strengthy/wq = 1.3.
Figure 11 shows the selectively detecftBgh coherence for a
range of relative RF field strengths/wq. The relative intensity
of the spectrum pertaining to tHex(s) coherence with respect
to the intensities of the other coherences is rather small, be-
cause in the double-quantum filtered experiment the coherence
transfer pulse angle was decreased to the magic anglefs4.7
suppression of the unwantdd,(a) coherence signal. The cen-
tral resonance in thess(a) spectrum exhibits a strong, relatively
narrow, Lorentzian component pertaining to the slow mode. In
accordance with theory, the slow mode is absent in the central
resonance of the selectively detecied and T ,x(s) spectra and
their shapes are sensitive to the fast modes only. The position
ofthe satellites is very sensitive to the spin-lock field strength and

10

F, (kHz)

the splitting increases with increasing RF power. FurthermorefIG. 10. Experimental sections (dots) aloifig of the selectively detected
they are particularly prone to inhomogeneous line broadenifigp) Tss(a), (middie) T22(s), and (bottom)T 2o coherences. FoF 2x(s) and

because of the inhomogeneity in the spin-lock field.
TheT o spectrain Figs. 10 and 11 are supplemented with sim

[13], in which the spin-lock field strengths and inhomogeneityjple-quantum coherence, respectively.

To the difference of the sections at the resonance positions of the two satellite
in F are displayed. The spectra were recorded with a relative RF field strengt
- . . . wl_/wQ = 1.3 (wq/27 =550 Hz). The solid lines represent simplex fits. To avoid

plex fits of the numerically solved time-evolution Egs. [8] an@yeriap, the spectra are shifted upward with 4 and 6 units for the double- an:
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obtained from an inversion recovery experiment. It should be

TABLE 5

noted that the spin-lock field strength and inhomogeneity de-Parameters Resulting from the Simplex Fit to the Selectively
termine the positions and widths of the satellites, respective@etectled Spin Polarlization Too Spectra (wq/2 =550Hz,J1=
The width of the central resonance is sensitive to one adjustab# s * Jo=110s )

parameter only, i.e., the low frequency spectral density. For gll;,, 3,0) = J(i1) = b(2)s™Y) Re_(sY) Ar. Res(s)) Ay

spin-lock field strengths, the experimental spectra are close
to the fitted theoretical curves with a single relative inhomo-
geneous broadeningyw; /w; = 0.12. The optimized spin-lock
frequencies and spectral densities are collected in Table 5. Thga
low frequency spectral density does not show a systematic vari-08
ation, which confirms our conjecture concerning the absence 4f33
dispersionin the corresponding frequency range (0-5 kHz). Fu
thermore, the average valdg(0) ~ Jy(A1) ~ Jo(r) = 285+

0.37 324 380 0.15 487 0.26
0.52 283 405 0.36 496 0.09
256 392 0.42 513 -0.01
272 391 0.40 552 -0.03
277 385 0.35 577 —-0.05
302 396 0.31 609 —0.06
£:00 295 385 0.22 613 —-0.05
2.56 279 372 0.17 603 —0.04

20 s agrees within experimental error with the value ob-
tained with a strong spin-lock field without coherence transfer

FIG. 11.

18

16

w1/mQ=2.6

m1/mQ=0.7

w1/mo=0.4

F, (kHz)

Experimental sections (dots) alofg of the selectively detected

quadrupolar spin polarizatichyg for various relative RF field strengths /wq - ; o
asindicated in the figure. The solid lines represent simplex fits. To avoid over/&} N0t exhibit a slow mode and are particularly sensitive to slov
the spectra are shifted upward with an increment of 4 units.

[Jo(2wy) = 310 s for w1 /27 = 5 kHz]. Table 5 also includes
the amplitudes and rates of both fast modes resulting from th
fit. With limited RF power, the central resonance becomes truly
bimodal and a fit to a single Lorentzian is clearly not sufficient.

The spectra pertaining to thes,(s) and T33(a) coherences
are less eligible to extract the dynamic information, becaus
they are characterized by a rather small intensity(s)] or a
prominent narrow component §s(a)]. In the fit of the latter
two spectra, the low frequency spectral density was kept fixe
at the average value 2855 whereas the spin-lock strength
and inhomogeneity were optimized. As displayed in Fig. 10,
excellent agreement between the fitted and experimental line
shapes is obtained with the same parameters as derived from t
T 20 Spectra.

CONCLUSIONS

We derived analytic solutions to the previously deduced mas
ter equation describing the evolution of the spin quantum numbe
| = 3/2 density operator in the presence of a RF field and bot
static and fluctuating quadrupolar interactioa$). In partic-
ular, the presence of a nonzero average electric field gradie
has important consequences for the spin dynamics. The spec
resulting from Fourier transformation of the evolutions of the
on-resonance spin-locked magnetization into the various cohe
ences display two satellite pairs and, in some cases, a central lir
From the approximate solutions, it results that the central line i
generally trimodal, consisting of a narrow component related tt
a slowly relaxing mode and two broad components pertaining t
two faster relaxing modes. Neither the amplitude nor the widtt
of the narrow component is affected by the magnitude of the
static coupling, whereas the characteristics of the broad con
ponents depend in a rather complicated manner on the relati
spin-lock field strength with respect to the static quadrupolar in:
teraction. One of the promising emerging features is the fact the
the evolutions into the central lines of the selectively detecte
quadrupolar order and the rank-two double-quantum coherenc

molecular motion. Furthermore, these coherences can only |
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