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The question is raised if a wave vector dependent dielectric structure 
function significantly describes electrolyte and polyelectrolyte solutions. 
Experimental results for the charge-charge structure function in elec- 
trolytes and in polyelectrolytes are presented at concentrations beyond 
the Debye-H/ickel range. A dielectric structure function and a macro- 
scopic dielectric constant are derived from scattering experiments. The 
time decay of the dynamical charge structure function is related to the 
Debye-Falkenhagen relaxation time. Effects of dissymmetry in charge 
and size are examined. Beyond a certain dissymmetry, the concentration 
fluctuations of the interacting counterions lower the energy of the sys- 
tem. We test these predictions first given by F. Oosawa and S. Mar~elia, 
by analyzing the q dependence of the charges structure function. We 
compare experimental results on DNA rods and Polystyrene sulfonate 
coils. 

1 In troduc t ion  

The presence of electrical charges in neutral solutions increases the complexity 
of these systems in several ways. Charges are known, for instance, to homogenize 
molecular structures and this is used to stabilize [1] colloidal suspensions. On the 
other hand, charge coupling can induce concentration profiles and mesomorph 
structures [2]. More characteristic is the fact that dielectric and charge transport 
properties are themselves modified by the structure transformations. There is an 
important feedback between molecular organization and electric properties. This 
relationship is well unterstood only in limited cases, where the inherent nonlin- 
earity can be reduced to a linear response. In very dilute electrolyte solutions, the 
charge structure and its implication on the electric conductivity are described 
by the Debye screening length [3]. Other well identified effects are the counterion 
condensation [4] on a linear polyion and  the electric persistance length [5] along 
flexible polyions. However, one does not know how these effects vary with solute 
concentration. 

Here we wish to examine further the relation between molecular structure 
and electric properties. For this we propose an experimental investigation, based 
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on the observation of the charge-charge structure function S~  (q, t). The latter 
is directly derived from concentration fluctuations in d: charges: 

= - p_(r) (i) 

The relation to electric properties is given by Gauss' Law 

47r p.. (r_______)) _ div grad ¢(r) (2) 

where e is the relative dielectric constant and ¢ the electric potential.  Equation 
(2) is fundamental  for our pu rpose .  

The charge-charge structure function S~z(q, t) can be determined directly in 
a scattering experiment if conditions for zero average contrast [6] (also called (9 
optical method) are met: Here the collision amplitude associated with a positive 
charge Should be of opposite sign and same magni tude  as a negative charge 
[7]. The possibility to label molecular structures without introducing physical 
perturbation (for instance by isotopic substitution) has allowed true correlation 
functions to be derived instead of apparent correlation, and the labelling pat tern 
associated to zero average contrast is one of them. 

The idea to apply such techniques was suggested by recent studies of Benoit 
[8], Borsali et al. on (neutral) block polymers in dilute solutions. When the 
contrasts of the two blocks with respect to the solvent are equal in magni tude 
but opposite in sign, the observed structure function Szz (q) reads 

q2 R 2 
< i (3) Sz (q)- 3 2 ' 

where RG is the radius of gyration of the copolymer. Further, for the relaxation 
t ime of the diffusive modes, the dispersion relation reads 

1 = D(1/R~ +q2) qRa < I (4) 
r(q) 

where n is the diffusion coefficient. Equations (3) and (4) are very suggestive of 
what is expected in electrolytes (see also earlier work by Nallet [9] et al.). We 
recognize namely in (3) an expression of Stillinger and Lovett's second sum rule 
[10], and in (4) an expression of Oebye and Falkenhagen's relaxation time. The 
analogy between the two situations is discussed in section 3. 

The use of the charge-charge structure function 

i d 3 r J  (p ( )p ( ) )  (5) Szz(q) = - ~  j d 3r'eiq(r-r') z r z r' 

in ionized systems is not new. Detailed accounts are found in the studies of 
molten salts, metal alloys and two-component plasmas. The authors were already 
concerned with the relation between the molecular structure and the electrical 
resistivity. For instance Bhatia and Thornton [11] suggest that  an enhancement 
of the concentration structure function, S¢¢(q) (similar to the charge-charge 
structure function Szz(q)) is responsible for a "rise in the resistivity-versus- 
temperature curve". 
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In two-component plasmas, J. P. Hansen and I. R. McDonald [12] find a nega- 
tive deviation from the Nernst-Einstein conductivity which is due to cooperative 
effects between charges. 

The new aspect in our study of the charge-charge structure functions is the 
presence of a large quantity of neutral solvent. This is of course a major com- 
plication, and the question is raised wether the solute charge-charge structure 
function in such a situation still has some significance. The rotation and defor- 
mation of solvent molecules also contribute to the dielectric structure [13]. It is 
not obvious that solute and solvent effects can be clearly identified. 

When a dissymmetry is introduced between positive and negative charge 
carriers as in polyelectrolytes, the charge structure is modified. The coupling 
constants are higher and part of the counterions accumulates in a frozen pro- 
file along the polyions. The charge-charge function acquires a new significance. 
Polyions are  quasi static in comparison to counterions, and the concentration 
fluctuations of the counterions tend to lower the energy of the system. Interest- 
ing consequences have been predicted by F. Oosawa [14] and S. Mar~elia [15]. 

Finally, we compare the charge-charge structure function of rigid rods and 
flexible coils. 

2 Formal  Re la t ions  and Sum Rules  

We give expressions for the charge-charge structure function and the sum rules 
in the limit q ~ 0. 

A) For a solution containing point charges of concentration p±(r), the charge 
structure function is given by equation (5). 

B) The sum rules are obtained by expanding the exponential in (5) about q = 0. 
In our case of simple point charges 

(Pz (r)pz (r')) -- (bp~ (r)bpz (r')) + constant 

where 5pz (r) is the charge fluctuation. 
We find [16] 

(6) 

1 / f f d 3 r ~  S , ( q )  = d3r  { 1 + i q  . r - ( q  . r) +...} (bp  (r' + r)) 
(7) 

The first two terms vanish because of electroneutrality. Then remains 

These equations express the Stillinger-Lovett sum rules and define the quan- 
tity ~ independently of any model. 
Later on, we shall also consider the case of concentration profiles [16], i.e. 
frozen structures. Here 
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# o (9) 
but electroneutrality is still satisfied. 

dar(pz (r)) = 0 (10) 

The sum rules remain valid, but the structure functions are modified. 
C) In reality, the charges are embedded in molecular structures. There is a 

competition between charge and molecular structure. In some cases it is 
easy to separate these contributions. 
We define See(q), the structure function resulting from a scattering experi- 
ment at zero average contrast. 

pSce(q) = PASAA(q) + pBSBB(q) -- ~ S A B ( q )  (11) 

where 

PV/7"~SAB(q) = V dar dar e,q,(r r )(pA(r)pB(r')} (12) 

are the partial structure functions, associated to the species A, B. 
We now assume that A and B contain respectively + and  - charges. In some 
cases, there is a simple relation between S~c(q) and &z(q). If the charges are 
located at the center of identical spherical molecules, then 

See(q) = f(q) . S~, (q) (13) 

where f(q) is the sphere form factor. If the system is a polyelectrolyte with 
flexible polyions, then in the Random Phase Approximation we have at low q 

q2 {Nh(q) + 1} 
~ = ~  

See(q) = q2 + -g {Nh(q) + 1} Szz(q) (14) 

where h(q) is the normalized form function of the polyion and N the degree 
of polymerization. Here we recover the result (8). However the RPA result 
cannot be trusted and the generalization of equation (13) or (14) is doubtful. 
The competition between charge and molecular fluctuations is the crux of 
our problem. 

3 T h e  C h a r g e - C h a r g e  S t r u c t u r e  i n  E l e c t r o l y t e  S o l u t i o n s  

The distribution of charges in electrolyte solutions is described in real space by 
pair correlation functions and in reciprocal space, by partial structure functions. 

The charge-charge structure function is a combination of the partial structure 
functions 

= & + ( q )  + s _ _  (q) - & _  (q) (15) 

The information contained in Szz (q) and in its elementary parts should be iden- 
tical. However the correlations appear in a different combination and in some 
sense, Szz (q) reveals other properties. 
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3.1 T h e  s u m  ru les  

The sum rules in the limit q -+ 0 illustrate our point. The partial structure 
functions Sij (q) are all related in the limit q ~ 0, to the osmotic compressibility 
Xo~. Where does this quantity appear in the charge-charge structure function? 
There are two approaches to answer this question. 

We first consider the second order matr ices / t (q)  and C(q), whose elements 
are respectively the Fourier transformation of the total and the direct partial 
correlation functions. The closure relation writes [17] 

(1 + / t ( q ) )  ( 1 -  C(q)) = 1  (16) 

If we identify C+_ (r) with the Coulomb potential -f lU+_ (r) and if we ex- 
pand about q = 0, we obtain to second order 

&,(q) = 

where  t¢ 2 = IBp. Here lB is the Bjerrum length. 
To fourth order [181,[191 

2q 2 1 

where 

1 + (q2/g2)pXosfl-1 det(I  - D(O)) 

(17) 

(is) 

47rlB PVffi~-B (19) hA,(q) = 0A.(q) + q2 

Expression (18) indicates that the osmotic compressibility controls here the 
structure at finite q rather than in the thermodynamic limit q -+ 0. This ef- 
fect was pointed out by Giaquinta et al. [18]. These authors give an interesting 
interpretation, based on the fact.that charge density and mass density are "dis- 
tinct fluctuation variables". There  are therefore two contributions to the charge 
current, one fi'om the electric field E and the other from the electrochemical 
potential #z- In presence of an external charge density, Pe(q), the charge concen- 
tration in the solution writes 

£ ) - 1  (20) p (q) -po(q) (1+ ,q] 

where 

2 = 4ve20 / ' t z  (21) 
a, Op~ 

We recover equation (18) after introduction of the dielectric and charge re- 
sponse function. We note further that in the frame of the Ornstein-Zernike the- 
ory, tz" in (17) remains proportional to p even beyond the range of validity [20] 
of the Debye-Hiickel theory. 
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3.2 T h e  c h a r g e  s t r u c t u r e  and  t he  c o r r e l a t i o n  hole  effect  

The ion concentration p±(r) and the charge concentration pz(r) have a char- 
acteristic structure in solution. Around a given charge, there is for instance a 
depletion of like charges and an enhancement of opposite charges. The partial 
structure functions S++(q) and S__ (q) give a good account of this structure. 
However, the most direct evidence for the effects of the Coulomb interaction is 
the charge-charge structure function. At low ,q, the function S~(q) is charac- 
terized by a single parameter, the inverse screening Length ~-1, see equations 
(8) and (17). It is of interest to note that a scattering experiment carried under 
zero average contrast conditions for a solute made of neutral particles, the result 
See(q) (which for charged particles is S~z(q)) writes 

See(q) = f(q) × 1 

where f(q) is the form factor of the solute molecules. 

(22) 

f 

Fig. 1. Schematic display of the charge-charge structure function Sz~(q) in electrolyte 
solution and the concentration structure function See(q) for two neutral solutes in 
a solvent. The correlation hole effect is important. An applied electric field at the 
Debye-Falkenhagen frequency would considerably reduce this effect. 

The difference is striking (see Figure 1) and points out the correlation hole 
effect. The usual method to observe the screening effect consists in interpreting 
osmotic pressure data as a function of solute concentration p. A signature of 
the screening structure is the variation of the osmotic coefficient proportional 
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to x/P" Similar behaviours are found in the variation of the electric conductivity 
and the macroscopic dielectric constant with p. These results are well unterstood, 
but  they do not provide a real s tructural  evidence, as given for instance by a 
wave vector dependence of the correlation functions. Therefore, the display of 
Szz(q), derived from an experiment (Fig. 2), gives a better representation of 
the screening structure. The solute concentration p (p = 1.5 × 10-4/~ -3 and 
3 × 10-4/~ -3) is very high compared to the domain of application of the Debye- 
Hiickel theory (pU3n-1 ~ 1). Nevertheless, as noted earlier, n~ oc p. 
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Fig. 2. Plot of S~2(q ) against q. The values of Szz(q) are derived from scattered in- 
tensities I(q) = pb f(q)S~(q), where p is the concentration , b the contrast length at 
zero average contrast (b = b+ = b-) and f(q) the molecular function, a) p = 0.25M; 
b) p = 0.SM. The cation is the triethylphenylammonium ion, the anion is deuter- 
ated tetraphenylborate, and the solvent is a mixture of hydrogenated and deuterated 
dimethylformamide. The characteristic lengths derived from the data are respectively 
n-1 = 4.1~ at 0.25 M and n-1 = 2.8~ at 0.5 M. These values scale like p-1/2. Mea- 
surements made at lower q values, but beyond the resolution of the spectrometers, 
could give different values. 

3.3 T h e  n e u t r a l  c o p o l y m e r  m o d e l  

The charge distribution is a very characteristic distribution. We ask if there exists 
a neutral  molecular model which reproduces the main properties of electrolyte 
structures. In Figure 1, we noted tha t  the structure of interacting but  electrically 
neutral  particles is very different from tha t  of charged particles. 
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On the other hand, the case of copolymer chains is very instructive, because 
it provides structures similar to (18). 

A copolymer is made of two chemical species A, B which polymerize accord- 
ing to some chemical structures (for instance random sequency or A,B blocs, 
etc.). The chain follows a random walk and the A,B monomers are distributed 
in space depending on the chemical structure. At zero average contrast, the 
copolymer form function obeys some rules which have a formal ressemblance to 
those proposed by Stillinger and Lovett: In a large volume, the concentration PA 
and PB are strictly equal, but locally the difference may fluctuate. 

We first consider the case of A,B diblocs. The A monomers and the B 
monomers form clouds which are separated by an average square distance R2B = 
5R~, where RG is the radius of gyration of the entire chain. The form function 
at zero average contrast reads 

N 
g h(q) = ~(hAA(q)  q- hBB -- 2 hAB(q)) (23) 

where N is the degree of polymerization of one strand and hAB(q) are normalized 
partial form functions. Expanding about q = 0 

Nh(q) = -~ - , qRa << 1 (24) 

The slope increases steeply with the number N and the model is therefore un- 
realistic from the point O f view of electrolytes. The number of particles within a 
volume R~ B is N >> 1. In the case of electrolytes the product x - 3 p  is a great 
number only in the high dilution (the Debye-Hiickel) limit. In our situation 
t~-3p ~ 10 -~, a very small number. 

The alternating copolymer A,B,A,B, etc. is a more interesting ease 

,)  

N h ( q ) =  12 (25) 

where I" is the mean square monomer size. 
If we replace I by ~, the "blob" correlation length, then we note that ~ ~ p-1/2 

in the mean field approach, and ~ (x p-3[4 in the scaling approach. The latter 
is more realistic, because the coupling constant in the polymer problem is large. 
This suggests that in some circumstances we may find other relationships than 
t¢ -1 o¢ pile in the electrolyte problem. 

For a random copolymer 

N h(q) -- 1/4 (26) 

The stun rule (17) is here violated; this reflects the annealed disorder of compo- 
sition along the chain. 

In summary, we have not found the molecular object which could totally 
reproduce the electrolyte structure. However, the comparison suggests possible 
alternations of the concentration dependence of the screening length. 
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3.4 T h e  cha rge  d i e l ec t r i c  s t r u c t u r e  f u n c t i o n .  C o u l o m b  u n m i x i n g  a n d  
f o r m a t i o n  of  m e s o m o r p h  s t r u c t u r e s .  

For the case of point charges, it is convenient to introduce the dielectric structure 
function ¢(q), which is the response [20] to an applied longitudinal field 

1 5pz(q) 
= 1 + - -  ( 2 7 )  

e(q) 6pezt(q) 
This function is directly related to the charge-charge structure function[20] 

1 47rlBp S~ (q) (28) e(q) = I q ~  
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Fig.3. Plot of 1/e(q) derived from Figure 2 and relation (21). If the solvent effect is 
to renormalize the macroscopic dielectric constant, then ¢(q) is the charge dielectric 
structure function. 

Charge screening controls the behaviour of ¢(q) at low q/n values. In the range 
q/n > 1, the function 1/¢(q) is sensitive to the formation of mesomorph struc- 
tures. They occur when the second term in (28) is greater than one, i.e. when the 
coupling constant and the charge fluctuations are important. Such an analysis 
is fruitful for instance in the study of molten salts. 

When the charges are embedded in a solvent we face a complex problem: 
The dielectric response also depends on the solvent and on the solute-solvent 
interactions, In a first approximation, we can argue that the (neutral) solvent is 
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characterized by a macroscopic dielectric constant So, which is simply a renormal- 
ized quantity in the sense that the Coulomb interactions of charges at distance 
r remain of the form e2/(s0 r). If this is true, the presence of a solvent only 
modifies the Bjerrum length IB in eq. (28). 

£2 

IB -- CO k----T (29) 

This hypothesis is consistent with the predictions of Debye and Falkenhagen 
[3]. These authors calculated the effect of added salt on so and find that the 
existence of a screened solute structure only produces a positive shift. For KC1 
in water the result is 

AC0 = 3.10 x 10-1°V/~ (30) 

where p is given in cm -3 units. If we interpret our data (Figure 2) in these terms, 
we find indeed a macroscopic dielectric constant co, whose value is very close to 
the solvent constant (¢0 = 32). 

This view is however an oversimplification. In fact, the response depends on 
the range of interaction between solvent molecules. In particular, if there exists 
a polar interaction, the fluid has a longitudinal dielectric structure [21] by itself: 
l /eL(q).  With Parrinello and Tosi [13] we can generalize equation (28) to 

1 ( zBc ) l  
{s(q)/cL(q)} = 1 -  \sL(q)/ 0 (31) 

However, it is necessary to know sL(q) in order to derive 1/s(q) against q, as- 
suming sL(q) --so and using the Szz(q) data. 

3.5 Collective mot ion  and dynamic structure function.  

The Coulomb long-range interaction induces collective motion in the thermal 
agitation of charges. If undamped, these motions take the form of oscillations 
at the plasmon frequency. If damped, as in solutions, these motions are char- 
acterized by a finite relaxation time at q --+ 0, namely r = 1/(~2D) where D 
is the diffusion coefficient. The dispersion relation r(q) associated to the relax- 
ation mechanism is of great interest. We discuss some characteristic features to 
be observed in the measurement of the dynamical structure functions. 

Let us consider the ion distribution around an excess charge in a dilute 
solution. The charges of opposite sign form a cloud with spatial distribution 
1 exp( -nr ) .  If the excess charge is removed at time t = 0, the cloud profile 7 
relaxes according to the law 

-5/2 exp (32) 

where 0 -- -t/T is the reduced time and ~- = (~2D)-I is the relaxation time. 
For the like charges, the depletion cloud follows a similar evolution (only 

the sign of the deviation to uniformity is changed). These results can be used 
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directly in the analysis of thermal fluctuations. Namely, the dynamical charge- 
charge structure function has the following expression: 

S~(q , t )  = S~(q) exp(-t/ 'r(q)) ( 3 3 )  

where 

l i t (q)  = D (t~ 2 + q2) (34) 

The observation of v(q) has not yet been carried out. However, the measure- 
ment of the dynamical form function of the model copolymer has already been 
performed by Borsali et al. [8]. Here 

h(q, t) -- h(q, O) exp(- t / r (q) )  (3~) 

where 

{° } 1/~-(q) = D ~ + ~q" (36) 

The dispersion relation (36) obtained experimentally by Borsali et al. [8], is 
plotted in Figure 4. In the case of electrolytes, we expect a stronger effect, i.e. 
the quantity 1/(q2r(q)) will be two orders of magnitude higher. 

7 

1 

o 
o 2 4 6 II ! o  12 14 IO 18 

q x 1 0 -~ (A -I) 
Fig. 4. Dispersion relation for interdiffusive and center of mass motion of a bloc copoly- 
mer. From Borsali et al. [8]. We expect a larger gap in the case of electrolytes. 
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This leads us to the main object of our investigation, namely the relation 
between S~z (q, t) and the dynamical dielectric response E(q, w). The results will 
be given in a forthcoming paper. 

Also of interest are the predictions concerning effects of an applied electric 
field at the Debye-Falkenhagen frequency [3]. This would considerably reduce 
the correlation hole (Figures 1 and 2) and the gap between interdiffusion and 
centre-of-mass dispersion relations (Figure 4). 

4 The Case of Polyelectrolytes 

Polyelectrolytes are made of polyions and counterions and are characterized by 
an important dissymmetry in size and charge. It is possible to study polyelec- 
trolytes by considering separately the polyion structure and the cloud of counteri- 
ons adjusting quasi instantaneously to the polyions, as in the Born-Oppenheimer 
approximation. The study of the polyion configuration reveals indeed many sig- 
nificant behaviours. The variation of viscosity versus concentration is a good 
example. 

However, a renewed interest is found in the study of the interdependence be- 
tween polyion- and counterion-structures. There are well-known feedback mecha- 
nisms. For instance, the thermal agitation of counterions determines the osmotic 
pressure, but polyions contribute as well. There are other interesting predictions, 
in particular those related to attractive forces between polyions due to fluctua- 
tions of counterions and Coulomb interactions [14]. The charge-charge structure 
function should reveal the correlation effects between polyions and eounterions 
and many of them result from nonlinear variation with the electric field. The 
relation between the measured structure function See(q) and the charge-charge 
structure function Sz~ (q) is here less obvious than in the case of simple elec- 
trolytes. The dissymmetry introduces a cross correlation between number and 
concentration fluctuations. Here we have simply identified See(q) and S~(q), 
ignoring the linear memory in polyions (see equation (14)). 

We compare two experimental results obtained at a monomer concentration 
of 0.2 Mol/1 (i.e. ~ 10 -4 /~-3) respectively on DNA rods [22] and Polystyrene 
sulfonate coils [23]. In both cases the counterion is tetramethylammonium (see 
Figures 5 and 6). We first note that the charge-charge structure functions S~¢ (q) 
are an order of magnitude greater in polyelectrolytes than in electrolytes (c.f. 
Figure '2). ~,Ve attribute the difference to the confinement of a large fraction of 
the counterions in the vicinity of the polyion. This confinement, which is related 
to the strong Coulomb coupling, creates a charge structure. A decomposition of 
the charge-charge structure function was recently proposed [16] 

Sz~ (q) = Szz (q) + Sz~ (q) (37) 

Here, the first term comes from the frozen structure and the second from the 
correlation in fluctuations. A calculation of Szz(q) was made for the rod ge- 
ometry, using the cell model and the Poisson-Boltzmann equation of the one 
particle density. We expect that the contribution of Szz(q) is less important in 
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Fig. 5. Top: The charge concentration profile in the cell enclosing a polymer rod 
(DNA). Bottom: The observed charge-charge structure function S~(q) is resolved in 
two components: S~ (q) derived from the concentration profile and S~z(q) derived from 
correlation in concentration fluctuation (from J.R.C. van der Maarel et aJ. [16]). 
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Fig. 6. The charge-charge structure function Sz~(q) measured in Polystyrene sulfonates 
(from J.P. Cotton [23] et al.). As in Figures 2 and 5 Szz(q) is a pure number. Note the 
difference of magnitude between electrolytes and polyelectrolytes. 

the case of the Polystyrene sulfonate coils, because of coil shape fluctuations at 
distances greater than the persistence length lp. We need to evaluate Szz (q) from 
the two-particles density. We have not yet found an analytical expression which 
accounts for the interaction between charges. An interesting prediction for this 
effect is the lowering of the total energy of the system, inducing attractive forces 
between polyions. We expect a corresponding increase in the Debye-Falkeahagen 
relaxation time. 

5 Conclus ion  

We have derived, from neutron scattering experiments, the structure function 
S¢c (q) associated with interdiffusion of negatively and positively ionized molecules. 
Our aim was to determine the charge-charge structure function Szz(q) from 

see(q). 
The experiments were carried out at concentrations p far beyond the range 

of validity of the Debye-ttiickel theory. In the case of 1:1 electrolytes in solution, 
we have analyzed the important correlation hole displayed by Szz (q). The corre- 
lation length n -1, in the window of observation, is small (pn -3 ,(<:: 1) and scales 
as p-l/2, A charge dielectric function e(q) was derived from S~  (q). Its interpre- 
tation depends on the solvent contribution to the premitivity. The latter either 
renormalizes the permitivity, or it introduces a longitudinal dielectric structure. 
Sot far, we have not found a way to deconvolute the two effects. 
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When the molecular structure becomes important as in the case of polyelec- 
trolytes, the relation between mass and charge fluctuations is less explicit, and 
this is the point of interest. 

We have compared the charge-charge structure function for DNA rods and 
polystyrene sulfonate coils. We note that the charge fluctuations are more im- 
portant than in electrolytes. We have identified, in the case of DNA rods, the 
contribution of frozen and fluctuation terms. We need a physical evidence of the 
lowering of the energy due to the interaction of fluctuating counterions [14]. This 
could be a shift of the Debye-Falkenhagen relaxation time, with respect to an 
equivalent electrolyte solution. 
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