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10 ABSTRACT: Monte Carlo simulations are used to study the
11 knotting probability of circular DNA confined in a slit. We
12 systematically vary the slit height, the width, and the contour
13 length of the DNA molecule. We find that the trend in
14 knotting probability with respect to slit height can be
15 monotonic or nonmonotonic, depending on the width and
16 contour length. The nonmonotonic trend is caused by two
17 competing factors: the increase of the effective persistence
18 length and the increase of segment density by slit confinement.
19 These factors are antagonistic, in the sense that the increase in
20 effective persistence length disfavors knot formation, whereas
21 the increase in segment density favors the knotting probability.
22 Our simulation results bring to light the importance of both chain length and width for slit-confined circular DNA and can be
23 used to guide future experiments which aim to produce populations of knotted DNA through cyclization or catalyzed double-
24 strand passage reactions in confinement.

25 DNA behavior in nanoconfinement is a burgeoning
26 research area. The motivation has been multifold. First,
27 nanodevices with well-defined canonical geometries (e.g., tubes,
28 channels, and slits) provide platforms for fundamental studies
29 of the static and dynamic properties of polymers in confine-
30 ment.1−11 Second, the understanding of DNA behavior in
31 nanodevices can be applied to genome analysis.12−14 Third, in
32 vivo DNA routinely experiences a confined environment due to
33 quasi-stationary membranes and filaments in cells. Confine-
34 ment in turn can affect the biological function of DNA. For
35 example, DNA confined in a viral capsid experiences a high
36 pressure which can eject the DNA into bacteria during the
37 infection process.15

38 For a linear DNA chain, the effect of confinement on the
39 conformation has extensively been studied using theories,16−18

40 simulations,19−21 and experiments.1−3 For a circular DNA
41 molecule, the effects of confinement are more complicated, due
42 to the interplay of geometrical confinement and topological
43 constraint (see ref 22 for a review). Such interplay may
44 contribute to the spatial organization of DNA in cells.23−25

45 Circular DNA may also be knotted,26−29 which affects its statics
46 and dynamics. The formation of knots results from either
47 cyclization30 or double-strand passage reactions catalyzed by
48 type II topoisomerase.31 The knotting probability, which is
49 defined as the fraction of knotted conformations from all
50 circular conformations, depends on the contour length and the

51effective diameter of the DNA molecule.26,30 In vivo, the
52knotting probability is actively controlled by type II top-
53oisomerases, because the knotting probability was found to be
54as much as 80 times lower than at thermodynamic
55equilibrium.31 The knotting probability was also observed to
56be dramatically enhanced by confinement inside the capsid of
57viruses.32 A virus capsid produces a nearly isotropic, spherical
58confinement. Computer simulations show that the knotting
59probability in spherical confinement monotonically increases
60with increasing confinement.33

61In contrast to spherical confinement, the knotting probability
62in slit confinement (a form of uniaxial confinement) can be
63nonmonotonic with increasing degree of confinement. Recent
64computer simulations by Micheletti and Orlandini34 reveal that
65the knotting probability is initially enhanced several fold by
66weak and moderate slit confinement and then decreases toward
67zero in strong slit confinement. In their simulations, the width
68of the DNA chain is held constant at 2.5 nm and the DNA
69length varied up to 4.8 μm. This chain width corresponds to
70DNA at high ionic strength. In experiments or in vivo, the
71effective chain width may be much larger than 2.5 nm due to
72decreased screening in the electrostatic double layer.
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73 In our work, we perform Monte Carlo simulations of circular
74 DNA in slits and vary both the chain width and the contour
75 length. The protocol allows double-strand passage (crossing of
76 duplex), which simulates some aspects of type II topoisomerase
77 activity as well as the cyclization of linear chains. The knotting
78 probability calculated from simulations corresponds to the
79 fraction of knotted conformations in circular DNA which are
80 obtained from cyclization experiments.26,30 We find that the
81 effect of slit confinement on the knotting probability may be
82 nonmonotonic or monotonic, depending on chain width and
83 contour length. We show that this trend arises from a
84 competition between the effective persistence length and
85 segment density in slit confinement.
86 The simulation method is almost identical to the one we
87 recently used for linear DNA in a slit,20 except for some
88 modifications for the modeling of circular DNA. Here, we
89 briefly describe the simulation method. DNA is modeled as a
90 ring chain of N beads connected by N inextensible bonds of
91 length lB, corresponding to a contour length L = NlB. There are
92 three types of interactions in the simulations: the hard-core
93 repulsion between DNA beads, the hard-core repulsion
94 between DNA beads and slit walls, and the bending energy
95 between adjacent bonds. The hard-core diameter of the bead is
96 set to equal the bond length lB. The bead diameter is equivalent
97 to the chain width w, such that the number of beads equals L/
98 w. The values w = 5, 10, and 20 nm correspond to ionic
99 strengths of approximately 160, 28, and 6 mM, respectively.8

100 The contour length is varied from 2 μm (∼6 kbp) to 16 μm
101 (∼47 kbp). For comparison, P4 phage DNA (∼10 kbp) is often
102 used to study the knotting in experiments30 and capsids.27,32

103 The bending rigidity is set to reproduce a persistence length of
104 50 nm. We do not consider the twist energy of the circular
105 DNA, so that our model corresponds to a nicked open-circular
106 DNA (similar to what was performed in ref 34).
107 The simulation starts from an unknotted conformation. We
108 perform one crankshaft move in each Monte Carlo cycle. The
109 crankshaft move may switch an unknotted conformation to a
110 knotted conformation, or the converse. We do not prevent such
111 a move, to obtain the knotting probability, just like the
112 simulations by Micheletti and Orlandini.34 The DNA
113 conformations sampled by this method correspond to DNA
114 rings obtained by randomly cyclizing linear DNA.26,30 The
115 simulation usually reaches equilibrium in 105 steps. In the
116 production run, we perform 1010 steps and record the
117 configuration every 105 steps for data analysis. For the
118 estimation of the error in the calculation of knotting
119 probability, we divide the 105 configurations into 10 bins,
120 calculate the average knotting probability in each bin, and then
121 calculate the standard deviation of these 10 values (see the
122 Supporting Information). The errors calculated in this way are
123 usually less than the symbol size in the figures, and most of our
124 figures do not show the error bars. We check whether or not
125 the circular DNA is knotted by the Alexander polynomial Δ(t),
126 following Vologodskii et al.35 In the current study, we do not
127 classify the knot type.

f1 128 First, we present the simulation results in bulk. Figure 1
129 shows the knotting probability kbulk as a function of the contour
130 length. As the chain becomes longer, the knotting probability
131 becomes larger. Similar results have been reported in
132 experiments26 and computer simulations.30 In addition, as the
133 chain width w becomes larger, the knotting probability
134 decreases. The dependence of kbulk on w has been used to
135 infer the effective diameter of DNA from the knotting

136probability in the condition of different ionic strengths.30 The
137chain width w = 0 corresponds to an ideal chain in which
138repulsion between DNA beads is turned off in the simulation.
139Next, we proceed to the simulation results of a circular DNA
140 f2in a slit. Figure 2 shows the knotting probability kslit as a

141function of the slit height. Different curves correspond to
142simulations using different contour lengths, but with the same
143chain width w = 10 nm. The knotting probability is normalized
144to the value in bulk. When the contour length is shorter than
145about 8 μm, the slit confinement has a nonmonotonic effect on
146the knotting probability. A similar trend has been observed in
147the simulations by Micheletti and Orlandini.34,36 However,
148when the contour length is 16 μm, increased confinement
149always reduces the probability for knot formation. As the chain
150length increases, the peak value of kslit/kbulk becomes smaller,
151and the peak position shifts to larger slit heights.
152 f3We now move on to study the effect of chain width. Figure 3
153shows simulation results obtained by using different chain
154widths, but with a fixed contour length of 8 μm. When the
155chain width is less than or equal to 10 nm, the knotting
156probability is nonmonotonic. However, when the chain width is
15720 nm, the trend becomes monotonic. As the chain width
158increases, the peak value of kslit/kbulk becomes smaller, and the
159peak position shifts to larger slit heights. In the case of an ideal
160chain (no excluded volume), kslit increases from kbulk in weak
161and moderate confinement and slightly decreases from the peak
162value in strong confinement. An ideal chain confined to a plane
163can cross itself, and thus the knotting probability does not

Figure 1. Knotting probability in bulk, kbulk, as a function of the DNA
contour length. Different colors (or symbols) correspond to different
chain widths. w = 0 corresponds to an ideal chain.

Figure 2. Normalized knotting probability as a function of the slit
height. Different colors (or symbols) correspond to different contour
length. The chain width is 10 nm for all curves.
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164 approach zero when H approaches zero, as shown by the
165 dashed line in Figure 3. Note that the ideal chain is not the
166 limiting case for a real chain with a vanishingly small width,
167 because a real chain can never cross itself when confined to a
168 plane, no matter how small the chain width becomes.
169 The peak positions in Figures 2 and 3 are related to the
170 confinement strength, that is, the ratio of the slit height to the
171 radius of gyration of a chain in bulk. For a thicker or longer
172 chain, the radius of gyration in bulk is larger, and so the peak
173 shifts to a larger slit height. In the Supporting Information, we
174 normalized the slit height to the radius of gyration of DNA in
175 bulk and replot Figures 2 and 3. The peak position in the
176 different curves occurs approximately when H is on the order of
177 the bulk radius of gyration. In addition, we also show the peak
178 value and peak position as a function of the contour length and
179 width in the Supporting Information.
180 Combining the information in Figures 2 and 3, we can create

f4 181 a plot (Figure 4) which generalizes the effect of slit

182 confinement on the knotting probability as a function of
183 chain width and contour length. The curve demarcates the
184 boundary of the nonmonotonic and monotonic regions. Above
185 the curve, that is, for long and thick chains, the slit confinement
186 monotonically decreases the knotting probability. Below the
187 curve, the knotting probability exhibits a nonmonotonic trend
188 when varying the slit height. Practically, it is difficult to obtain
189 the boundary for a very short or very long chain. For a very
190 short and thick chain (the left-hand end of the curve in Figure

1914), the knotting probability is too small (less than 1%) to
192obtain the precise value. For a very long chain, the
193computational time becomes impractical. It is expected that
194for an infinitely long chain the critical chain width approaches
195zero. This is because the knotting probability of an infinite long
196chain in bulk is 1,37 and the knotting probability in a slit cannot
197exceed this value. With decreasing L, the critical chain width
198increases more rapidly. However, the critical chain width
199cannot increase to infinity, because it must be less than the
200contour length. The nonmonotonic trend will occur for short
201and thin chains, such as those used in the simulations by
202Micheletti and Orlandini.34

203To determine the mechanism for the nonmonotonic trend,
204we have analyzed some other quantities of the DNA
205conformation in the simulations. First, we consider the average
206segment density C̅seg as a function of the slit height. The
207segment density is inversely proportional to the chain volume.
208Here, the volume occupied by the chain is defined as the
209product of the three eigenvalues of the radius of gyration
210tensor, instead of the radius of gyration cubed Rg

3, because
211DNA conformations in slits are significantly anisotropic. As
212 f5shown in Figure 5a, the segment density monotonically

213increases as the slit confinement becomes stronger. The
214increase in segment density favors knot formation. Note that
215if we use Rg

3 to infer the segment density, we observe
216nonmonotonic change of Rg

3 as a function of H, which agrees
217with the results by Micheletti and Orlandini.34 However, Rg

3

218does not accurately reflect the chain volume.
219Next, we calculate the average number of self-crossing events
220N̅cross when we project the DNA chain on the slit wall, as shown
221in Figure 5b. Note that N̅cross here is not the number of
222crossings used for the knot classification, because most of the
223self-crossings can be removed by three types of Reidemeister
224moves38 in knot simplification. N̅cross is normalized to the bulk
225value N̅cross

bulk . In bulk, we choose a random direction to project
226DNA before counting the number of crossings. The values of
227N̅cross

bulk are 77.6, 66.6, 59.0, 63.6, and 39.5, when w = 2.5, 5, 7.5,

Figure 3. Normalized knotting probability as a function of the slit
height. Different colors (or symbols) correspond to different chain
widths. The contour length is 8 μm for all curves.

Figure 4. Diagram of the effect of slit confinement on the knotting
probability as a function of the width and the contour length. The
curve demarcates the boundary between the monotonic and the
nonmonotonic kslit versus H regions.

Figure 5. (a) Normalized DNA segment density as a function of the
slit height. (b) Number of crossings as a function of the slit height.
N̅cross is the average number of crossings for the chain projection on a
slit wall, which is normalized to the bulk value. Different symbols
(colors) correspond to the simulations using different chain widths
and the same contour length of 8 μm.
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228 10, and 20 nm, respectively. N̅cross monotonically decreases as
229 the slit height decreases. Since N̅cross is positively correlated
230 with the knotting probability, the decrease of N̅cross by slit
231 confinement disfavors knot formation.
232 The nonmonotonic behavior of the knotting probability in
233 slit confinement appears to be the result of the competing
234 effects of N̅cross and C̅seg. However, as shown in Figure 4, the slit
235 confinement monotonically decreases the knotting probability
236 for a sufficiently thick chain or a sufficiently long chain. The
237 monotonic trend is most likely because the disfavoring factor of
238 knotting formation (decrease of N̅cross) overwhelms the
239 favoring factor (increase of C̅seg) for the whole range of
240 decreasing H (increase in confinement). As shown in Figure
241 5a,b, for a thicker chain, the favoring factor becomes weaker,
242 and the disfavoring factor becomes stronger. This may be the
243 reason for the monotonic trend when the chain width is
244 sufficiently large. In addition, the competition of the (dis)-
245 favoring factors should also depend on the value of kbulk. For a
246 long chain, kbulk is large, and then the knotting probability is
247 relatively difficult to increase by slit confinement. As mentioned
248 above, the limiting case is that when the chain is infinitely long
249 with a maximal knotting probability of unity. Accordingly, for a
250 sufficiently long chain the knotting probability decreases
251 monotonically with increasing slit confinement.
252 The increase of C̅seg by slit confinement is relatively easy to
253 understand. The decrease of N̅cross by slit confinement is due to
254 the increase of the effective persistence length by slit
255 confinement. For an ideal chain, our previous simulations
256 show that the effective persistence length monotonically
257 increases when the slit height decreases.20 The effective
258 persistence length is extracted from the exponential decay of
259 the correlation of segment orientation. For a real chain, the
260 effective persistence length is also observed to be increased
261 greatly by slit confinement in strong confinement regime.39 In
262 addition, the excluded volume interaction prohibits the self-
263 crossing of a real chain when the slit height is less than the
264 chain width. As a result, for a real chain N̅cross approaches zero
265 when H approaches zero.
266 Our simulations demonstrate the interplay of spatial
267 confinement and topological states. Slit confinement increases
268 the segment density, which favors knot formation. On the other
269 hand, with decreasing slit height, the effective persistence length
270 of DNA increases from Lp in bulk to 2Lp in a plane. This
271 increase in orientation correlation length disfavors knot
272 formation. The excluded volume interaction is also of
273 importance, because it greatly decreases the knotting
274 probability in strong confinement. Overall, the results reveal
275 that all four lengths of the system, that is, persistence length,
276 chain width, contour length, and slit height, play essential roles
277 in determining the knotting probability. The competition of
278 different interactions gives rise to the nonmonotonic or
279 monotonic trend in the knotting probability. Different modes
280 of confinements (e.g., sphere, tube, slit) will in turn have
281 different effects on DNA behavior, because the competitions of
282 different interactions will vary. For instance, previous
283 experimental results reveal that the tube and slit confinements
284 have different effects on DNA compaction induced by
285 depletion.9,10 Spherical confinement monotonically increases
286 the knotting probability,33 which is different from the effect of
287 slit confinement. Thus, it would be interesting to examine the
288 effect of tube confinement on the knotting probability. Analysis
289 of the populations of special knot types in confinement is also

290an interesting topic, which has been explored by Micheletti and
291Orlandini34 but only for a fixed chain width of 2.5 nm.
292Note that in our simulation the Monte Carlo moves allow for
293a DNA segment to pass through another one. As mentioned
294previously, the knotting probability calculated here thus
295corresponds to the fraction of nontrivial knots in the DNA
296rings cyclized from linear chains.26,30 The situation may also be
297realized in the presence of type II topoisomerases. However,
298type II topoisomerases change the distribution of different
299topological states by a bias in double-strand passage reactions
300through the dissipation of energy.31 In other words, in the
301presence of type II topoisomerases the distribution in
302topoisomers differs from the one obtained from random
303passage reactions. Furthermore, in the absence of cutting
304enzymes, the topology of circular DNA is of course
305preserved.11,40 In this case, slit confinement has no effect on
306the topological state of DNA.
307The simulation results presented here can help to predict
308experimental conditions to produce knotted DNA through
309cyclization in confinement. The experiment in a slit rather than
310in bulk should be more efficient to obtain knotted circular
311DNA, provided the ionic strength is sufficiently high. For
312example, in the case of λ-DNA with a contour length of 16 μm,
313the ionic strength should be larger than 30 mM (i.e., the
314effective diameter8 of DNA is less than about 9 nm) to increase
315the knotting probability by slit confinement.
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