Binary Phase of Layered Nanotubes

R.L.D. Whitby,¹ W.K. Hsu,¹ C.B. Boothroyd,² P.K. Fearon,¹ H.W. Kroto¹ and D.R.M. Walton¹

¹ School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, BN1 9QJ, UK.
² Department of Materials Science & Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.

ABSTRACT

A binary phase of layered nanotubes, where MWCNs (Multi-walled carbon nanotubes) are coated by WS₂, are generated by pyrolysing WO₃-coated MWCNs in an H₂S/N₂ atmosphere at 900 °C. TGA and TEM show that WS₂ acts as an antioxidant to the MWCN core.

INTRODUCTION

It has been demonstrated that MWCNs can act as templates for the generation of other types of nanotubes,[1, 2] despite problems associated with their high surface tension.[3] Previous methods for coating MWCNs with WO₃ involved surface oxidation, which generated –COOH or –OH groups[2, 4] and the MWCNs were often found uncapped and peeled.[4] Here we describe a technique for depositing WO₃ onto the surface of MWCNs and conversion to WS₂ without affecting the carbon template.

EXPERIMENT

H₂WO₄ (250 mg) and MWCNs (50 mg) were mixed at −78 °C in liquid NH₃ (~20 cm³) and the mixture was set aside in order to attain room temperature. The solid residue was then heated at 350 °C for 15 min in an air flow (100 cm³ min⁻¹) to convert H₂WO₄ to WO₃ and then further heated at 900 °C for 15 min in a mixture of H₂S and N₂ (ca. 1:3 ratio, total 50 cm³ min⁻¹) to convert WO₃ into WS₂. The products were ultrasonically dispersed in acetone and mounted on lacey carbon films (Cu support grids) for TEM analysis. The following equipment was employed as appropriate: high-resolution transmission electron microscopy (HRTEM, JEOL 4000 EX II operated at 400 kV, Philips CM 200 operated at 200 kV) equipped with an energy dispersive X-ray probe and line mapping (EDX), and thermogravametric analysis (Perkin Elmer TGA-7, heating rate of 10 K min⁻¹).
DISCUSSION

HRTEM showed that 60% of the MWCNs were either partly or fully coated with dark material, typically with 1 to 3 layers (Figure 1). A number of features are distinguishable in the HRTEM images of the sample: 1) the d-spacing of MWCN layers is maintained after the experiment at ca. 3.4 Å; 2) the d-spacing of the dark layers is ca. 6.2 Å, consistent with separate WS$_2$ nanotubes; 3) the distance between the centres of the outermost C layer and the innermost WS$_2$ layer is ca. 4.4 Å; 4) the residual amorphous layer coating both the partly and fully coated MWCN is WO$_{3-x}$, resulting from the incomplete conversion of WO$_3$ to WS$_2$.

![HRTEM image of MWCNs and polyhedral carbon particle coated with WS$_2$.](image)

EDX analysis was carried out on both partly and fully coated MWCNs. Only a C signal was detected when the probe was focused on the uncoated sections of a partly coated MWCN. C, W and S, together with a trace of O, were detected when the EDX probe was focused on the coated section (Figure 2). Quantitative analysis showed the atomic ratio of W to S was 1:2 (± 0.1), implying a WS$_2$ structure.
Figure 2. EDX profile for a fully WS$_2$-coated MWCN.

Line mapping analysis was carried out on a fully WS$_2$-coated MWCN. The C, W and S mappings were taken from C-K$_{\alpha}$, W-M$_{4\alpha}$1 and S-K$_{\alpha}$ states respectively (from the EDX probing results). The mapping profile intensity was found to be $W > S > C$. The width of W and S profiles was greater than the C profile and indicates that the MWCNs are actually sheathed within WS$_2$ tubes.

A diffractogram (Figure 3b) was derived from Fourier Transform calculations on the WS$_2$-coated region of Figure 3a. Two sets of diffraction spots appear in hexagonal arrays, which match the diffraction pattern for the hexagonal WS$_2$ structure. Two hexagonal arrays result from the electron beam scattering by the front and rear coated sections of the MWCN, which are rotated from each other by ca. 17°. Therefore the WS$_2$ nanotube is helical and inclined at ca. 8.5°. Above the white arrows (Figure 3a) part of the WS$_2$ coat is extended away from the overlap of the front and rear coating sections. Striations, inclined at 8.5°, are observed extending from one side of the WS$_2$ coat to the other, which are comprised of spots separated by ca. 3.1 Å. This is represented in Figure 3c (upper), where the spots correspond to the positions of W atoms, in hexagonal WS$_2$, in which they are separated by 3.153 Å (3c, lower). By enhancing the HRTEM image (Figure 3a) by computer, the bonding structure of WS$_2$ can be clearly observed (Figure 3d).
Figure 3a) HRTEM image of a partly WS$_2$-coated MWCN (below white arrows), insert shows electron diffraction pattern from a WS$_2$-coated MWCN. b) diffractogram obtained from the lattice image of Figure 3a showing the tube helicity to be ca. 8.5°. c) a simulated dark spot array from the excess of WS$_2$ coating the rear of the tube; the W-W distance is ca. 3.1 Å. d) an enhanced HRTEM image of WS$_2$ coating the rear of the MWCN.

Previous reports showed that MWCNs are significantly damaged when heated at 700 –750 °C for 30 min and lose about 99 % mass. The remaining 1 % are significantly damaged and decapped.[5] For comparative purposes, TGA analyses were performed on MWCNs, WS$_2$-nanostructures and WS$_2$-coated MWCNs. In Figure 4, the TGA curve of MWCNs (red line)
shows that the onset of oxidation begins *ca.* 700 °C and drastic mass loss occurs between 700 and 900 °C. At ca. 910 °C their mass loss is ca. 99 %. The TGA curve of WS₂-nanostructures (green line) exhibits a 3.4 % mass loss at ca. 530 °C. This is attributed to the conversion of WS₂ into WO₃. No further mass loss is recorded towards the end of the experiment. The TGA of WS₂-coated MWCNs (blue line) shows a stepwise profile. The first mass loss is around 450 °C, attributed to the WS₂ converting to WO₃. This occurs at a slightly lower temperature than separate WS₂-nanostructures, possibly due to the thinner and more defective WS₂ layers coating the MWCN allowing easier diffusion of gases between the layers. The second mass loss occurs between 550 and 850 °C, attributed to the oxidation of MWCNs. The resulting dark-green powder (WO₃ is a light green powder, therefore the darker green colour arises from the presence of MWCNs mixed with WO₃) was subjected to TEM analysis and revealed the presence of MWCNs that are slightly thinned and decapped (Figure 5).

![TGA curve of MWCNs, WS₂-nanostructures and WS₂-coated MWCNs.](image)

Figure 4. TGA of MWCNs, WS₂-nanostructures and WS₂-coated MWCNs.
Figure 5. TEM image of WS$_2$-coated MWCNs after TGA. Selected MWCNs exhibit a reduction in the number of carbon layers towards the tip due to peeling (arrows).

CONCLUSIONS
We have demonstrated the facile way in which WO$_3$ can be deposited onto MWCN surfaces and converted to WS$_2$. Interestingly, this transformation converts disordered WO$_3$ into layered WS$_2$ nanotubular sheaths. Due to its composite nature, we have improved the ability of MWCNs to withstand oxidation, which may find application as fire-retardant strengthening additives.

ACKNOWLEDGMENTS
We thank the Leverhulme Trust, the Royal Society and the EPSRC (UK) for financial support. We are also grateful to D. Randall and J. Thorpe (University of Sussex) for assistance with TEM analysis and N. Billingham (University of Sussex) for TGA discussions.

REFERENCES