WS₂ layer formation on multi-walled carbon nanotubes

 ¹ School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, BN1 9QJ, UK
² Department of Materials Science & Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK

Received: 17 June 2002/Accepted: 19 June 2002 Published online: 15 January 2003 • © Springer-Verlag 2003

ABSTRACT Time-dependent powder X-ray-diffraction analyses reveal that the conversion of WO₃ into WS₂ on carbon nanotube surfaces in the presence of H_2S is a one-step process. The WS₂ layers grow simultaneously along the tube in the radial and axial directions.

PACS 61.10.Nz; 61.46.+w; 61.50.Ks; 81.07.De; 81.10.Aj

1 Introduction

The production of WS₂ nanotubes and nanoparticles, first achieved by heating WO3 nanoparticles at 800- $1000 \,^{\circ}\text{C}$ in the presence of H_2/H_2S (sulphidisation) [1], has recently been extended to WO_{3-x} and WC precursors [2–4]. X-ray-diffraction (XRD) studies, coupled with high-resolution transmission electron microscopy (HRTEM), have shown that the WO₃ particle surface is first reduced to WO_{3-x} (x = 1 and 2), followed by conversion into hexagonal layered WS₂ [3,5]. The reactant gases (H₂ and H₂S) diffuse through the lattice defects in the outer WS₂ layers in order to continue the WO₃ \rightarrow WO_{3-x} \rightarrow WS₂ process. This 'inward' sequential layer growth process is terminated when the core is fully converted into WS₂. The morphology of the precursor essentially determines that of the product, i.e. a template effect operates [5]. The diffusion of H₂ and H₂O through defects in the formed WS₂ layer is a slow process, which requires extended periods of sulphidisation in order to complete the $WO_3 \rightarrow WS_2$ conversion. Residual WO_{3-x} is always present in the product, as revealed by powder XRD analysis [2].

Sloan et al. showed that, by annealing $WO_{(2.5-2.9)}$ nanorods in the presence of H_2/H_2S , other reduced tungsten oxide phases may also be generated and encapsulated within WS_2 particles [6]. HRTEM revealed that the tungsten oxide particle surfaces were converted into layered WS_2 , and that WO_{3-x} crystalline lattice fringes were present within the core, together with numerous crystallographic shear planes and voids between the WO_{3-x} core and the outer WS_2 layers.

Recently, we produced WS_2 -coated multi-walled carbon nanotubes (MWCNs) [7]. HRTEM analyses indicated that the

'inward' growth mechanism is in competition with an 'outward' growth mechanism on the MWCN surfaces. The 'outward' process is presumably facilitated by facile diffusion of H₂S through the thin and highly defective layers of WO₃ supported by the MWCNs [8]. In this paper, we probe this direct transformation of monoclinic WO₃ into hexagonal WS₂, without involving the intermediate species, i.e. WO_{3-x}.

2 Experimental

Tungstic acid (H₂WO₄, 250 mg) was mixed in liquid ammonia at -78 °C. Arc-generated MWCNs (50 mg) were added and the mixture was allowed to attain room temperature. The production of WS₂-coated MWCNs was carried out in three stages. Stage I: the solid residue, remaining after the excess of liquid ammonia had evaporated, was heated at 350 °C for 15 min in an air flow (100 cm³ min⁻¹), in order to convert the H₂WO₄ into WO₃. Stage II: the mixture was annealed at 900 °C under a N₂ flow (50 cm³ min⁻¹) for 15 min. Stage III: H₂S gas (10 cm³ min⁻¹) was then introduced at 30-s intervals per min for a total of 6 min. The solid residue was then subjected to HRTEM (Philips CM200 and JEOL 4000EX-II) and powder XRD (Siemens Diffractometer D5000, Cu $K_{\alpha} = 1.5418$ Å).

3 Results and discussion

3.1 Stage I – amorphous WO₃-coated MWCNs

The WO₃-coated MWCNs were heated at 350 °C in an air flow for 15 min, prior to sulphidisation. A typical example of the product is shown in Fig. 1a. The coating appears to be amorphous and is unevenly distributed over the surface of the MWCNs. Difficulties in distinguishing between the MWCN surface and the amorphous coating may have been exacerbated by the loss of the WO₃ coating during TEM operation. It is noteworthy that the arc-generated MWCNs are often coated with amorphous carbon. Our MWCN sample was annealed at 350 °C for 15 min in air, in order to remove the amorphous carbon coating [9]. Accordingly, the MWCN surface should be coated with WO₃, as confirmed by energy dispersive X-ray (EDX) spectra (see below). HRTEM showed that the WO₃ coating varies in thickness (from 0 to 2 nm) along the MWCN surface, and that the inner-core structure of coated MWCNs is still visible (Fig. 1a, arrow). Large

FIGURE 1 a TEM image of WO₃-coated MWCNs. Arrow highlights the hollow MWCN structure. **b** EDX profile of a WO₃-coated MWCN. **c** HRTEM image of a double-layered WS₂-coated MWCN. Arrow indicates amorphous WO₃ or WO_{3-x} coating

carbon particles also exhibited similar amorphous coatings. EDX analyses were conducted on both coated and uncoated MWCNs. The uncoated MWCNs showed only the C signal, whereas coated MWCNs showed C, W and O signals (Fig. 1b). The thickness of the WO₃ coating facilitates formation of up to two WS₂ layers on the MWCN surface, assuming $a \sim 6.2$ -Å *d* spacing along the *c* axis for WS₂ and $a \sim 4.4$ -Å separation between the innermost WS₂ layer and the outermost carbon layer [7].

XRD analysis of the WO₃-coated MWCNs annealed at $350 \,^{\circ}$ C revealed the presence of several small reflections (Fig. 2a), which makes the assignment of a crystal system to WO₃ difficult. However, the peaks which appear at low angles are correlated with monoclinic lattice arrays and are present in

FIGURE 2 XRD profiles of a 300 $^\circ$ C annealed WO₃-coated MWCNs and b 900 $^\circ$ C annealed WO₃-coated MWCNs. c Simulated XRD profile for monoclinic WO₃

a predominantly amorphous sample; the 002 reflection, arising from MWCNs at $\sim 2\theta = 26.5^{\circ}$ (i.e. a value similar to that previously reported for pure MWCNs) [10], overlaps slightly with WO₃.

3.2 Stage II – annealed WO₃-coated MWCNs

Amorphous WO₃-coated MWCNs were annealed at 900 °C under N₂ for 15 min. At this stage the resulting solid contains WO₃-coated MWCNs, bare MWCNs and WO₃ particles. The XRD profile of annealed WO₃-coated MWCNs (Fig. 2b) shows that the WO₃ reflections mostly overlap with MWCNs. The only visible peak for MWCNs is the 002 reflection at $\sim 2\theta = 26.5^{\circ}$ (Fig. 2b, arrow). XRD indicates that the WO₃ structure has a well-defined monoclinic phase; reflection intensities are much stronger than those of stage I and match the computer-simulated powder XRD pattern of a WO₃ monoclinic crystal (Fig. 2c) [11]. However, HRTEM failed to reveal distinct lattice fringes for WO₃ coating the MWCNs (previously observed in pure WO₃ nanocrystals) [6], possibly for the following reasons. First, the MWCN lattice fringes interfere with WO₃. Secondly, the crystal growth on a planar substrate is linear with respect to the x - y and y - zplanes. The MWCN surface is curved, implying that the stacking of W and O atoms to form crystal structures can only be achieved locally on the MWCN surface. If the localised WO₃ crystal domains are not well aligned to the incident beam, or are covered by amorphous WO₃, distinct WO₃ lattice fringes will not emerge. Meanwhile, determination by HRTEM of the

FIGURE 3 XRD profiles of sulphidisation at 0-, 2-, 4- and 6-min intervals

spacing between the WO₃ and the MWCN surface is difficult. As thin crystal layers would broaden reflection peaks, it is therefore possible that the X-ray-diffracting domains mainly arise from WO₃ particles, with a smaller contribution originating from the WO₃ coating the MWCNs. This contention is supported by the presence of three sharp reflections at low angles $2\theta = 22-24^{\circ}$, i.e. a larger spacing between adjacent crystal planes along the 200, 020 and 002 directions (see Fig. 3). However, no other types of WO₃ crystal (e.g. hexagonal phase) were found in XRD profiles, which means that the annealing of H₂WO₄ leads preferentially to a monoclinic WO₃ phase.

3.3 Stage III – sulphidised WO₃-coated MWCNs

The annealed WO₃-coated MWCNs were heated at 900 °C in the presence of H_2S/N_2 (flow rate 100 cm³ min⁻¹; $H_2S : N_2$ ratio ~ 1 : 4), with intervals up to a total H_2S exposure time of 6 min. The XRD graphs of 0-, 2-, 4- and 6-min sulphidisation periods are displayed in Fig. 3, in which the major reflections due to WO₃, WS₂ and MWCN are labelled.

3.3.1 2-min sulphidisation (Fig. 3). As a result of 2-min sulphidisation, the intensities of all WO₃ reflections are reduced by $\sim 20\%$. A small peak, corresponding to 002 reflections of WS₂, is present at this stage, implying that H₂S has begun to replace O atoms by S in the WO₃ coating and particles. Surface substitution of O by S will result in the presence of partial oxygen vacancies in the lattice arrays, and thence to maintenance of a monoclinic system with low-intensity peaks [6]. This outcome is consistent with the concept that the type of crystal lattice determines the peak distribution and that the atomic arrangement determines the reflection intensity [12].

3.3.2 4-min sulphidisation (Fig. 3). The WO₃ reflections 002, 020, 200 and 222 decreased to $\sim 20\%$ of their original intensity, whereas the WS₂ 002 reflection intensities were ~ 10

times stronger than those associated with 2-min sulphidisation (blue). Due to overlap with the 100 and 101 WS₂ peaks, the extent of the intensity decrease in the 220 and 022 WO₃ peaks is unclear. A similar situation occurs for the 112 WO₃ peak. Other WS₂ peaks, including 103, 110 and 112, have become visible. The 002 MWCN peak remains unchanged.

3.3.3 6-min sulphidisation (Fig. 3). The WO₃ reflections are reduced to $\sim 5\%$ of their original intensity. The thin defective WO3 coating allows H2S diffusion and would therefore facilitate transformation into WS_2 . The peaks corresponding to the remaining WO₃ could also arise from separate WO₃ structures in the sample, which can still be detected after 10-min sulphidisation. However, the XRD reflections are now predominantly WS₂, which exhibits a well-defined crystal structure. The WS₂ peak intensities and positions are strong and consistent with those of pure WS₂ nanotubes [2]. According to HRTEM investigations, $\sim 1-5$ WS₂ layers coat the MWCNs (i.e. L_c is ~ 3–4 nm), which is smaller than the number found in separate WS₂ particles (> 7). Therefore, the contribution to XRD profiles mainly arises from the separate WS₂ nanostructures; only a small fraction of XRD originates from the WS₂ coating. TEM reveals that 70% of the MWCNs are coated, the extent of coating varying between 25% and full coverage. Figure 1c shows a double-layered WS₂-coated MWCN, in which a small amount of residual amorphous WO₃ (or WO_{3-r}) remains on the WS₂-coated surfaces (Fig. 1c, arrow). As a consequence, insufficient W or O atoms are present within the remaining oxide lattice; hence they are unable to form another WS₂ layer or to form a reduced tungsten oxide crystalline phase. Peaks, corresponding to a reduced tungsten oxide, are absent in Fig. 3.

At this stage it is difficult to see how monoclinic WO₃ can be transformed into hexagonal WS₂, because the W-atom sites in a monoclinic cell (Fig. 4, right) differ significantly from those in a hexagonal unit cell (Fig. 4, left). For example, the nearest W–W distance along the *a* and *c* axes is 0.38 nm in a monoclinic cell, whereas in a hexagonal WS₂ cell the W–W distances along the in-plane and *c* axes are 0.31 nm and 0.62 nm respectively. The W atoms undergo significant movement during the WO₃ \rightarrow WS₂ conversion in order to adopt sites consistent with the hexagonal layered WS₂ struc-

FIGURE 4 Structures of monoclinic WO₃ (right) and hexagonal WS₂ (left)

ture. Meanwhile, as WS₂ forms, the oxidation state for W in WO₃ [M^{VI} (d^0)] is reduced to M^{IV} (d^2) [13]. A previous study demonstrated that WO₃ was reduced in the initial stages of the reaction [5]. Intermediate WO_{3-x} species represent partial movement of W atoms (leading to the final structure), which have been identified by XRD and HRTEM [5, 6]. Meanwhile, W centres have been detected in pure WS₂ nanostructures, where reduction is complete [14].

Replacement of O by S in WO₃ requires a 63% lattice expansion (~ 0.24 nm) along the O–W–O (011) plane, and a 15% contraction along the (002) plane in monoclinic WO₃ $(P_{121}/n1)$ respectively [11], in order to achieve the 0.62-nm (002) S–W–S basal plane spacing in WS₂ (P_{63}/mmc) (Fig. 4, right) [15]. The lattice expansion implies that a 1.5-nmthick WO_3 coating may generate up to four WS_2 layers. The 'inward-growth' model means that the WO3 monoclinic lattices can only expand inwards, leading to compression of the remaining inner core. This inner core compression may result in the crystallographic shear planes, reported previously by Sloan et al. [6]. In our sample, the WO₃ shear planes are not visible on the MWCN surfaces. Due to the thin defective WO₃ coating, the H₂S diffusion into the WO₃ lattice, which leads to $WO_3 \rightarrow WS_2$ conversion on the MWCN surface, most probably occurs simultaneously along the radial (Fig. 5, c) and axial directions (Fig. 5, a). The simultaneous WS₂ layer formation of WS₂ layers along both axes means that the inward compression can be minimised along the axial direction, and the need for crystallographic WO₃ shear plane formation obviated. In a previous study, we found that the WS₂ coating layers exhibited helical structures and that the WS₂ tube helicity did not correlate with MWCN lattices [7]. The absence of lattice correlation between the WS₂ coating and the MWCN surface is possibly due to the large 0.44-nm separation [7]. The WS_2 helicity is unique throughout the tube structure, as revealed by electron diffraction [7], which supports the simultaneous WS₂ layer formation along the radial and axial directions on MWCNs. If the WS₂ layer formation were achieved via the melding of localised WS_2 layered domains, the WS_2 helicity is less likely to be uniform and one might expect various sections of the WS₂ shells to exhibit a range of helicities. In

FIGURE 5 Simultaneous growth model of WS_2 layers along the carbon nanotube radial (*c*) and axial (*a*) directions

order to determine the extent of WS2 formation on MWCN surfaces, time-dependent XRD analyses were carried out on sulphidised WO₃-coated MWCNs in 30-s intervals (Fig. 6). The extent of WS_2 layer growth along the *c* axis versus reaction time is also shown (Fig. 6, inset), which was obtained from the full width at half maximum (FWHM) of the WS_2 002 peak [10]. The graph of WS_2 layer growth along the c axis can be divided into four regions, i.e. a (grey), b (blue), c (red) and d (green). No WS₂ was detected between 0 s and 50 s (region a), which is consistent with the real-time XRD data; i.e. no WS₂ in-plane L_a (e.g. 110, 100) and along the c axis L_c (e.g. 002, 103) reflections are present (Fig. 6). However, all WO₃ reflection intensities, e.g. 200, 020, 002, 022, 220, 222 and 112, decreased within the first 50 s. The WS_2 layer begins to form after 50 s, supported by the presence of a small WS₂ (002) peak (Fig. 6). Between 50 s and 120 s (i.e. region b), the intensity of WO₃ reflections continuously decreases and other WS₂ reflections are still absent. It is noteworthy that the XRD analysis shows only a slight increase

FIGURE 6 Time-dependent XRD profiles of sulphidisation in 25-s intervals (*inset*: WS₂ layer extent versus time)

in WS₂ (002) peak intensity (50–120 s, Fig. 6); however the number of WS₂ layers has already reached 10 (region b, inset). The WS₂ (002) peak intensity increases significantly in the 120–200-s range, and other WS_2 peaks, e.g. 103, 110, 100 and 112 (Fig. 6), become visible. The number of WS_2 layers within region c increases by two (inset). The intensity of all WO₃ peaks decreases significantly in region c. The peak intensity and number of WS2 layers in region d are similar to c. Figure 6 provides useful information regarding WO₃ transformation into WS₂ on MWCN surfaces. First, region (a) corresponds to the diffusion of H_2S into defective WO₃ coating layers. In previous reports, Feldman et al. pointed out that the 1–2 WS₂ layers formed rapidly on the oxide particle surface within a few seconds, inhibiting particle aggregation [5, 16]. In our experiments, the absence of WS_2 layer formation between 0 s and 50 s (i.e. region a) is possibly due to insufficient hydrogen, i.e. the reducing agent arises only from H_2S (see Sect. 2), which slows the rate of reduction of the oxide coating. The role of H₂ during WO₃ \rightarrow WS₂ conversion has been described previously; it was found that an excess of H_2 is required in order to rapidly reduce WO₃ to WO_{2.9} or WO_{2.7} (i.e. the intermediate phase) [16]. The presence of suboxides probably facilitates WS₂ formation, because the suboxides possess octahedral structures (similar to the WS_2 structure) enabling ready replacement of O by S [16]. In our experiments, region a shows no WS₂ layer formation, but provides a longer time for H_2S diffusion into the coating WO_3 , prior to $WO_3 \rightarrow WS_2$ conversion, which assists simultaneous WS_2 layer growth along the c (radial) and a (axial) directions (Fig. 5). Between 50 s and 120 s (i.e. region b), the rapid increase in the number of WS₂ layers (Fig. 6, inset) is consistent with the simultaneous WS₂ layer formation model along the c and a axes. Nevertheless, the WS_2 (002) peak intensity in region b shows only a small increase, as compared with region c (i.e. 120-200 s, Fig. 6). Meanwhile, it is noteworthy that the WS_2 002 peak width in region b remains the same as that in region c, indicating that the number of WS_2 layers on the MWCN surfaces is the same for both regions. In other words, WS₂ growth on MWCN surfaces has already ceased in region b. Previous XRD profiles, based on the inward growth model of WS₂ particles, showed that the WS₂ peak intensity increases with WO₃ peak intensity, which decreases with time [5, 16]. The increase/decrease in WS_2 and WO₃ peak intensities respectively is due to the fact that more WO_3 is converted into WS_2 layers. In our experiments, WS_2 layer formation on MWCN surfaces is rapid, which means that region b should exhibit a rapid increase/decrease in WS_2 (002) and WO₃ peak intensities respectively. However, this phenomenon is not observed. According to XRD data, the monoclinic WO₃ structure dominates in the overall sample between 50 s and 120 s (i.e. region b), mainly arising from the unreacted WO_3 . The question therefore arises as to what is the actual WS_2 structure in regions b and c, because the WS₂ 002 reflection exhibits the same peak width, with different intensities. The XRD intensity is determined by the type and position of the atoms within the unit cell; the larger the crystallite, the sharper the peak [12]. A small increase in WS_2 peak intensity (region b) implies that the S atoms have not yet fully occupied O vacancies, but that the host structure (monoclinic phase) has already been transformed into the hexagonal

FIGURE 7 The structure of WS₂ in region b

cell. Accordingly, the XRD peaks of region b mainly arise from W atoms. As time progresses, more S atoms can occupy the lattice vacancies and the XRD peak intensity increases. Previous workers [16] proposed a structure consisting of two W-centred octahedral units connected via an O atom, with O atoms missing at the upper and lower sites of a prismatic cell. This structure provides a preferential pathway for O-S substitution about the W centres via the O–W–O planes along the b axis towards the WS2 002 planes [13]. However, the proposed structure is based on the inward growth process. The simultaneous formation of WS_2 on MWCN surfaces provides no preferential pathway for O-S substitution, and all W atoms need to be relocated within the cell. The structure of the W/O/S in region a is complex and remains to be established. Figure 7 shows the corresponding structures of WS₂ in region b, in which adjacent W atoms are connected via O atoms, similar to the O–W–O plane along the c axis (Fig. 4, right). When O atoms are released from the lattices, the S atoms immediately occupy the vacancies. In region b, the O population is greater than that of S; more S atoms are present in the lattice as the reaction time is extended (region c). The presence of a slight increase in the WS_2 layer number in regions c and d possibly arises from other WS₂ particles, not WS₂-coated MWCNs, because the H₂S diffusion and O-S substitution can still proceed on other larger WO₃ particles.

In summary, the XRD study shows that the conversion of WO_3 into WS_2 is a one-step process. The WS_2 layers grow simultaneously along radial as well as axial directions and no intermediate phases are involved. Time-dependent XRD profiles show that the WS_2 growth on the MWCN surfaces ceases before 120 s have elapsed.

ACKNOWLEDGEMENTS We thank the Leverhulme Trust, EP-SRC and the Wolfson Foundation (UK) for the financial support.

REFERENCES

- 1 R. Tenne, L. Margulis, M. Genut, G. Hodes: Nature 360, 444 (1992)
- 2 Y.Q. Zhu, W.K. Hsu, H. Terrones, N. Grobert, B.H. Chang, M. Terrones, B.Q. Wei, H.W. Kroto, D.R.M. Walton, C.B. Boothroyd, I. Kinloch, G.Z. Chen, A.H. Windle, D.J. Fray: J. Mater. Chem. **10**, 2570 (2000)
- 3 Y.Q. Zhu, W.K. Hsu, N. Grobert, B.H. Chang, M. Terrones, H. Terrones, H.W. Kroto, D.R.M. Walton, B.Q. Wei: Chem. Mater. 12, 1190 (2000)

- 4 A. Rothschild, J. Sloan, A.P.E. York, M.L.H. Green, J.L. Hutchison, R. Tenne: Chem. Commun. 363 (1999)
- 5 Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J.L. Hutchison, R. Tenne: J. Am. Chem. Soc. 118, 5362 (1996)
- 6 J. Sloan, J.L. Hutchison, R. Tenne, Y. Feldman, T. Tsirlina, M. Homyonfer: J. Solid State Chem. 144, 100 (1999)
- 7 R.L.D. Whitby, W.K. Hsu, C.B. Boothroyd, P.K. Fearon, H.W. Kroto, D.R.M. Walton: Chem. Phys. Chem. 2, 620 (2001)
- 8 R.L.D. Whitby, W.K. Hsu, H.W. Kroto, D.R.M. Walton, P.K. Fearon, N.C. Billingham, I. Maurin, C.B. Boothroyd, S. Firth, R.J.H. Clark, D. Collison: Chem. Mater. 14, 2209 (2002)
- 9 P.M. Ajayan, T.W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hirua: Nature **362**, 522 (1993)
- 10 W.K. Hsu, S. Firth, P. Redlich, M. Terrones, H. Terrones, Y.Q. Zhu,

N. Grobert, A. Schilder, R.J.H. Clark, H.W. Kroto, D.R.M. Walton: J. Mater. Chem. **10**, 1425 (2000)

- 11 C.D.S.–I.C.S. Database, File 56 238, Monoclinic WO₃, accessed July (2001)
- 12 L.V. Azaroff, M.J. Buerger: *The Powder Method* (McGraw-Hill, New York 1958) pp. 24–26
- 13 W.K. Hsu, Y.Q. Zhu, C.B. Boothroyd, I. Kinloch, S. Trasobares, H. Terrones, N. Grobert, M. Terrones, R. Escudero, G.Z. Chen, C. Colliex, A.H. Windle, D.J. Fray, H.W. Kroto, D.R.M. Walton: Chem. Mater. 12, 3541 (2000)
- 14 A. Rothschild, J. Sloan, R. Tenne: J. Am. Chem. Soc. 122, 5169 (2000)
- 15 C.D.S.–I.C.S. Database, JCPDS 8-237, Hexagonal WS₂, accessed July (2001)
- 16 Y. Feldman, V. Lyakhovitskaya, R. Tenne: J. Am. Chem. Soc. 120, 4176 (1998)