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a b s t r a c t

Off-axis electron holography provides a direct means of retrieving the phase of the wavefield in a
transmission electron microscope, enabling measurement of electric and magnetic fields at length scales
from microns to nanometers. To maximise the accuracy of the technique, it is important to acquire
holograms using experimental conditions that optimise the phase resolution for a given spatial resolu-
tion. These conditions are determined by a number of competing parameters, especially the spatial co-
herence and the instrument instabilities. Here, we describe a simple, yet accurate, model for predicting
the dose rate and exposure time that give the best phase resolution in a single hologram. Experimental
studies were undertaken to verify the model of spatial coherence and instrument instabilities that are
required for the optimisation. The model is applicable to electron holography in both standard mode and
Lorentz mode, and it is relatively simple to apply.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Off-axis holography in the transmission electron microscope
(TEM) is an established technique for measuring the electrostatic
and magnetic properties of materials and devices. The technique
reconstructs the phase shifts experienced by the electron wave-
field and uses them to map the spatially varying electric or mag-
netic field. In the pursuit of measuring the increasingly weaker
electric and magnetic fields generated from nanomaterials, the
necessary improvements in the resolution of the reconstructed
phase have been pursued using various strategies, which can be
loosely categorised according to instrumental improvements, and
improvements in data acquisition and processing.

There exists a fairly extensive body of literature reporting phase
resolution improvements within both of the above-mentioned
categories. In general, the phase resolution can be improved only
by increasing the coherent electron dose. On the instrumentation
side, higher coherent doses have been achieved by brighter elec-
tron sources [1,2] and the use of elliptical illumination [3,4]. Im-
provements in microscope stability enable larger doses via longer
exposure times [5]. The improvement of a charge-coupled device
(CCD) camera's modulation transfer function (MTF) can also in-
crease the detectable coherent dose [6]. On the data acquisition
. Chang),
and processing side, a greater dose and hence better phase re-
solution has been achieved by the use of multiple holograms [7–
9], which applies also to the case of phase-shifting holography
[10–12].

Considering the number of available methods for improving
the phase resolution, it is important to understand the dominant
factors that limit the phase resolution. Typically, many of the ex-
perimental parameters are pre-determined by the requirements of
the specimen. These include the hologram fringe spacing (which
determines the spatial resolution), overlap width (which de-
termines the field of view), and magnification (which should be as
high as the overlap width allows). These parameters are therefore
regarded as essentially fixed. The remaining parameters with
which we can optimise phase resolution can be grouped into two
categories, namely the partial spatial coherence and the instru-
ment instabilities. These parameters are controlled via the electron
dose and exposure time, respectively.

In this paper, we describe a simple, yet accurate, model capable
of predicting the dose rate and exposure time that give the best
phase resolution in a single hologram. To make the presentation
tractable, we have restricted our attention to the instrumental fac-
tors affecting holography, and have not concerned ourselves ex-
plicitly with factors associated with the specimen. Hence our results
reflect the best-possible phase resolution that can be achieved
under given conditions on a particular instrument. In the presence
of specimen drift and/or dose-dependent specimen damage, the
optimum dose rate given here remains entirely valid, while the
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optimum exposure time may need to be reduced accordingly.
In light of the considerable body of literature describing the

theories and experimental factors governing the phase resolution
in off-axis electron holography [4,7,13–17], our work requires
some justification: our aim is to provide a simple and practical
methodology, as free as possible of unnecessary details. In parti-
cular, the models for spatial coherence and instrument instabilities
are kept as simple as possible. Furthermore, we describe a minimal
experimental dataset that can be used to predict the optimum
conditions for all combinations of fringe spacings, overlap widths
and magnifications. Our results can also be applied, with minimal
modification, to the case where multiple holograms are used.

This paper is organised as follows: Section 2 provides some
background on the concept of a phase error in electron holo-
graphy. In Section 3 we outline the theoretical model used for
predicting the optimum conditions. Section 4 describes our ex-
perimental setup and processing methods. Our results and dis-
cussion are presented in Section 5. In Section 6 we discuss the
extension to elliptical illumination before concluding in Section 7.
2. The phase error

The phase resolution, herein referred to as the phase error,
determines the minimum difference that can be distinguished in
the reconstructed phase (here we are concerned with statistical
errors rather than systematic ones). Fig. 1(a) illustrates the phase
error associated with an arbitrary point in the reconstructed wave
function. In the ideal case, each point of the wave function would
correspond to a point in the Argand plane. However, due to the
finite electron dose (among other reasons), there is always a sta-
tistical error associated with the complex value ψ. In Fig. 1(a) this
error is represented as a cluster of points spread symmetrically
around the nominal value ψ, the points corresponding to the va-
lues obtained by repeated independent measurements. The phase
error is typically defined as the standard deviation ϕΔ of the re-
peated phase measurements [13–15].

For the case illustrated in Fig. 1(a), the phase error is given to
good approximation by A/ meanϕ ψΔ ≈ Δ . For very low doses, how-
ever, the noise in the reconstructed phase grows to the extent that
the phase error represented by this simple formula becomes ill-
defined (in extreme cases the phase error so calculated will exceed
2π). This problem can be remedied by using the standard deviation
associated with the cosine and sine of the phase, as illustrated in
a

Fig. 1. Schematic representations of the phase error associated with a given point in t
applicable when the dose level is sufficiently high. (b) Definition of the phase error in term
arbitrarily low doses. For high doses these definitions become equivalent.
Fig. 1(b). The latter definition has the benefit of remaining well
defined for arbitrarily low doses. The two definitions are equiva-
lent for sufficiently high doses.
3. Theory

The interference pattern produced by two partially coherent
plane waves e / 2ik x2 1π · and e / 2ik x2 2π · , as measured by a pixelated
electron detector in an off-axis holographic setup, is described by
the expression
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This expression describes a set of cosinusoidal fringes sitting on a
constant background, expressed in terms of detector signal N x( ),
where Ne is the average number of detected electrons per pixel, C
is a constant which we describe below, the complex number V
weights the interference terms and obeys V0 1≤ | | ≤ , and Varg
denotes the complex argument (or phase) of V. The number V
incorporates any factors that lead to a damping of the interference
fringes in a relative sense, which include the partial spatial co-
herence of the beam, instabilities of the instrument, and the less-
than-perfect modulation transfer function (MTF) of the detector.
The magnitude V| | is the visibility of the interference fringes (also
termed the fringe contrast). The constant C equals the average
signal output from the detector per incident electron, and so it
incorporates factors such as the less-than-perfect detector quan-
tum efficiency (DQE) and the detector gain G.

3.1. Phase error and the effective signal

Following Fourier processing of the off-axis hologram, the
statistical phase error in a given pixel in the reconstructed wave
function is given approximately by the expression
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ϕΔ ≈

where Neff is the effective signal per pixel [13,14]. The latter is
defined as
b

he reconstructed wave function ψ. (a) Conventional definition of the phase error,
s of the cosine and sine of the phase. The definition in (b) remains well-defined for
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N V N x( ) . (3)eff
2= | | 〈 〉

The phase error in Eq. (2) is understood as being inversely
proportional to the Poisson noise of N G/eff , which is the effective
number of detected electrons per pixel. Eq. (2) holds provided that
N G/ 1eff ≫ . If N G/ 1eff ≲ , then Eq. (2) diverges and we should
employ the more general definition of phase error outlined in
Fig. 1(b).1

The effective signal Neff is a crucial concept in the present work
and the appearance of V 2| | in the definition of Neff warrants a re-
mark. Although this expression for the effective signal has been
derived previously [14], intuitively it might be expected that the
effective signal should be proportional to the amplitude of the
interference fringes, which would make Neff proportional to V| |,
and not V 2| | . However, in addition to the Poisson noise associated
with the interference fringes, it is crucial to consider the Poisson
noise contributed by the constant background. Consideration of
these contributions shows that the effective signal is proportional
to V 2| | .

From Eq. (2), it is easily understood that the optimum condition
for holographic phase measurements corresponds to maximising
Neff . In order to proceed, we must adopt a model to describe the
visibility V| |. In accordance with the aims of the present work, the
model used here is kept as simple as possible while still affording
sufficient accuracy:

V V V t S N( ) ( ). (4)0| | = ^

where V0 is the time- and dose-independent part of the visibility,
which arises from factors such as the detector MTF, V(t) is the
time-dependent part of the visibility, which arises from in-

stabilities that are slower than the fastest exposure time, and S N( )^

is the spatial coherence envelope of the wavefield, which is writ-
ten here as a function of the average signal per pixel per unit time:

N N t/^ = . Note that Eq. (4) is separable in N̂ and t, which allows N̂
and t to be optimised independently.

3.2. Model of partial spatial coherence

The partial spatial coherence of the wavefield arises primarily
from finite source effects and instabilities in the gun and illumi-
nation systems. Together, these effects can be grouped into an
effective incoherent source distribution. For holography, we em-
ploy Köhler-like illumination, so that the relevant spatial co-
herence envelope is, according to the Van Cittert–Zernike theorem
[18], given by the Fourier transform of the effective source. As-
suming round illumination, we adopt the following phenomen-
ological model for the partial spatial coherence envelope:

S N e( ) , (5)w N w N( / ) ( / )
1/2 2^ = α δ β δ− ^ − ^

where α and β are constants to be determined, w is the inter-
ference width, and δ is the effective pixel size as determined by
the magnification (not to be confused with the physical pixel size
in the camera). This spatial coherence model corresponds to a
rotationally symmetric effective source having the form of a bi-
variate Cauchy distribution (the first term in the exponent) con-
voluted with a Gaussian distribution (the second term in the
exponent).
1 We also note that, strictly, the expression in Eq. (2) applies only if (1) the
reconstruction uses a mask that is localised in real space, and (2) the detector
preserves the Poisson statistics of the electron beam [16]. While these conditions
are not strictly satisfied in our experiments, they are satisfied sufficiently well that
meaningful and accurate results are obtained, as will be verified by the results
presented in later sections.
The commonly used Gaussian coherence model [17], although
especially simple, did not produce a satisfactory fit to our experi-
mental data. This observation is reminiscent of source size mea-
surements in scanning transmission electron microscopy, where
departures from a Gaussian source shape have been observed [19–
21]. The model in Eq. (5) is similar to that used in Ref. [21], but it
contains only two parameters (α and β) instead of three. While the
model of Ref. [21] is also capable of providing a good fit to our
experimental data, the simpler form of our model has advantages
in mathematical manipulations.

3.3. Model of time-dependent visibility

The primary instabilities contributing to V(t) are likely to be the
biprism position and/or beam tilt, which produce a movement of
the holographic fringes during the exposure time. Here we make
no attempt to analyse the origins of the fringe movement, but seek
only to model it. It is worth noting that movement of the biprism
cannot be readily distinguished from beam tilt, and that the effect
of either instability is independent of the fringe spacing.

Our analysis of the hologram stability (presented in Section 5.2)
reveals that the fringes exhibit both a stochastic motion and a
longer-term near-linear drift. For common exposure times, we find
that the stochastic motion dominates. Hence the fringe motion can
be described by a probability distribution x t( , )ρ , which gives the
probability of a displacement x at time t. A mathematical analysis
shows that such motion gives rise to the following time-depen-
dent visibility:

V t
t

t f t( )
1

d ( ) ,
(6)

t

0
∫= ′ ′

where the function f(t) is the Fourier transform of the probability
distribution x t( , )ρ evaluated at the carrier frequency:

f t x x t e( ) d ( , ) , (7)
ix d2 /∫ ρ= π−

where d is the fringe spacing. Note that in Eq. (6), V(t) is defined as
the modulus of a complex number, which reflects the loss of fringe
contrast due to their movement. (The phase that is omitted by Eq.
(6) reflects the average apparent shift of the fringes after an
exposure time t, though we do not use this phase in our analysis.)

The stochastic motion can be modelled using Langevin theory,
which was originally developed to describe the Brownian motion
of particles undergoing random collisions. Adopting such a theory,
the displacement of the fringes obeys the following probability
distribution:
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where the variance of the displacement is given by

( )x t d t t e( ) 2 / 1 , (9)c c
t t2 2 / c〈 〉 = + −−

with tc and dc being the average time and average distance be-
tween “collisions”, respectively (in the present context, a “colli-
sion” is simply an event where the fringe velocity changes
abruptly). An important aspect of the Langevin theory is that it is
applicable to times both short and long compared to the collision
time tc. The motion at these times exhibits the correlational and
diffusional behaviours, respectively:

t t x t d t t

t t x t Dt

: ( ) /

: ( ) . (10)

c c c

c
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≫ 〈 〉 =

where D d t2 /c c
2= is a diffusion coefficient. The function f(t) re-

levant to the time-dependent visibility becomes
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Fig. 2. Theoretical modelling of the time-dependent visibility V(t) due to the sto-
chastic motion of the holographic fringes. (a) V(t) as a function of exposure time for
selected fringe spacings, (b) the optimum exposure time as a function of the fringe
spacing.

2 In passing, we note that this optimum value of N̂ corresponds to a degree of
spatial coherence given by S exp[ ( 8 )/8 1/2]opt 2α α α β β= − + − . If we were to
assume a Gaussian coherence envelope, then 0α = , and we obtain
S e 0.61opt 1/2= ≈− , in agreement with previous work [17]. We emphasise, however,
that a satisfactory fit of our experimental data required nonzero values of both α
and β, so that Sopt then depends on α and β as above, and hence on the particular
instrument. For the instrument used here, the fitted values of α and β give
S 0.45opt ≈ .
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f t e e( ) . (11)x t d d d t t t t
stoch

4 ( ) / (2 / ) ( / exp( / ) 1)c c c2 2 2 2= =π π− 〈 〉 − + − −

Unfortunately, the rather complex dependence on t means that it
is not possible to obtain an analytical expression for V t( )stoch that is
applicable at all times. Instead, we have resorted to obtaining
V t( )stoch by numerical integration, with the result shown in Fig. 2a.

The above model for V(t) differs from those of previous works,
which employed either a linear displacement model [7] or a dif-
fusion model applicable only to times t tc≫ [8]. Here we found
that the form of the Langevin model, in which tc separates the
regimes of correlational and diffusional motion, was important. It
will turn out that commonly used exposure times straddle both
regimes.

3.4. Optimum conditions

The experimental parameters that can be adjusted to optimise

the conditions for holography consist of the normalised signal N̂
(controlled by the gun and illumination lenses), the holographic
fringe spacing d (controlled by the biprism voltage), the inter-
ference width w (controlled by the biprism voltage and the bipr-
ism defocus), the pixel size δ (controlled by the magnification),
and the exposure time t. Of these parameters, d, w and δ are

dictated by the specimen geometry, which leaves N̂ , and t as the
independent parameters. Hence, given the values of α, β, dc and tc
applicable to a particular instrument, our goal is to predict, for
given values of d, w and δ, the optimum values of N̂ and t. These
optimum values maximise Neff (or minimise ϕΔ ).

A straightforward application of calculus shows that the opti-

mum value of N̂ is given by2
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A straightforward application of calculus also gives the opti-
mum exposure time:

N N t tf t t f tmax ( , ) 2 ( ) d ( ). (13)t

t
eff stoch

0
stoch∫^ ⟹ = ′ ′

While this expression cannot be evaluated analytically, the opti-
mum time can be obtained numerically and is plotted in Fig. 2b.

In practice, the procedure can be made very simple: the para-
meters α, β, dc and tc are determined by fitting data acquired for a
specific choice of d, w and δ. Let us denote the latter values by d0,

w0 and δ0. The fitting identifies optimal values of N̂ and t, which

we denote by N0
^ and t0. Then, for other values of d, w and δ, the

optimal N̂ is given by

⎛
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⎠⎟N
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(14)

0 0
2

0
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Note that the scaling factor in Eq. (14) does not involve α or β, and
so it does not depend on the performance of the instrument

(though the actual value N0
^ , and hence N̂ , does). Also note that

w /0 0δ and w/δ are simply the interference widths measured in units
of the effective pixel size. For the optimum t, we must consult
Fig. 2b in the general case. However, for fringe spacings less than
about 4dc, the time-dependent visibility V(t) is limited by correlative
motion, and we have the simple and intuitive result t d d t( / )0 0= .
4. Methods

4.1. Experimental set-up

The experiments were carried out using a Titan 80-300 FEG-
TEM (FEI Co.) operated at 300 kV. The microscope was equipped
with an ultra-bright X-FEG electron gun, two electron biprisms,
and a 2k�2k CCD camera. The upper biprism (not used here) is
located in an extra lens inserted between the diffraction lens and
the imaging aberration corrector, and the lower biprism is in the
selected-area aperture position. Blank holograms (no specimen)
were recorded using the lower biprism. The biprism voltage for
the primary datasets was set to 150 V, which in standard mode
(i.e., standard imaging condition with the objective lens on, in
contrast to Lorentz mode) corresponds to a fringe spacing of
0.08 nm. The magnification used (450k) corresponds to a pixel size
of 0.019 nm per pixel. The overlap width was measured to be
25 nm. The exposure time was 1 s unless specified in the text. All
of our experiments employed round illumination, though our
methodology can be easily adapted to elliptical illumination (see
Section 6).
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Secondary datasets were obtained for different combinations of
the biprism voltage and magnification. Datasets were also taken
using Lorentz mode. In the latter mode, the objective lens is turned
off, the Lorentz lens is excited, and all other lens settings are main-
tained. The secondary and Lorentz mode datasets were used only in
Section 5.4. The primary dataset was used throughout the paper.

4.2. Processing of holograms

As the processing procedure can affect the measured values of
the visibility and the phase error, the following describes our
procedure for obtaining the relevant quantities, which include the
mean signal (in CCD counts) interference width, fringe visibility,
and phase error.

The mean signal was measured from the central regions of the
holograms to minimise the influence of the Fresnel fringes. The
interference widths, measured relative to the specimen plane,
were determined by taking into account both the measured
overlap widths in the holograms and the finite width of the
biprism wire. The width of the biprism wire relative to the spe-
cimen plane was measured by focusing the biprism using the
diffraction lens, and then taking into account the associated
change in magnification, giving a width of 6.070.1 nm.

The fringe visibility and the phase error were measured by the
following procedure: a complex wave function having the size of
the original hologram was obtained by an inverse Fourier trans-
form of the masked and re-centred sideband. A hard circular mask
with a radius of one-third the distance between the centre band
and the sideband was employed. Distortions due to the fibre optics
of the CCD camera were measured and subsequently removed
from the reconstructed phase. Furthermore, a high-pass filter was
applied to remove the slowly varying component of the phase
arising from effects such as a non-planar wavefront or long-ranged
camera distortions. This filter had the Fourier-space representation

ekHPF( ) 1 k 0
k

,
/22 2δ= + − σ− , where the width of the Gaussian cor-

responded to approximately 10 fringe spacings and the delta
function has the effect of retaining the wave function's mean va-
lue. To minimise the influence of the Fresnel fringes, only the
portion of the wave function in the central region of the overlap
was considered. The fringe visibility was calculated directly from
the average modulus of the wave function. The phase error ϕΔ was
calculated by employing the general definition in Fig. 1(b).
Fig. 3. (a) Fringe visibility, (b) effective signal and (c) phase error as a function of
the mean signal, which was controlled by varying the illumination lenses C1, C2
and gun lens. A biprism voltage of 150 V, exposure time of 4 s, and magnification of
450k apply throughout.
5. Results and discussion

5.1. Partial spatial coherence

The first part of our analysis serves to check how the various
lenses in the illumination system affect the spatial coherence of
the electron wavefield. From Eq. (4), changes in the spatial co-
herence are directly related to changes in the fringe visibility.
Hence the fringe visibility was measured as a function of excitation
of the lenses C1, C2 and Gun Lens, which were varied individually,
and all other parameters were kept constant. From Fig. 3(a), it is
seen that the measured visibility decreases with increasing signal,
and that essentially the same values are measured regardless of
which lens is used to control the signal. The fact that the different
lenses produce the same result is expected from the point of view
of first-order optics, where beam intensity can be gained only at
the loss of spatial coherence, in such a way that the beam
brightness remains conserved. Our observations here rule out
significant higher-order optical effects and instabilities at any of
the intermediate images of the source, and thus provide assurance
that the illumination lenses are interchangeable in their effect.
Fig. 3(b) and (c) shows the corresponding measurements of the
effective signal and the phase error, respectively. The effective
signal is given by N V Neff

2= | | , which contains two competing fac-
tors: on the one hand, a stronger signal may result in a larger ef-
fective signal. On the other hand, a weaker signal may also lead to



a

b

Fig. 4. (a) Fringe displacement as a function of time, measured using 1000 blank
holograms over a timespan of 67 min. The inset reveals the timescale of the ran-
dom motion. (b) The average (black squares) and rms (red triangles) displacement
for time intervals up to 400 s. The theoretical models are overlaid (dotted lines).
(For interpretation of the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

a

b

Fig. 5. Phase error as a function of mean signal for exposure times of 0.25–8 s
(a) and 8–64 s (b). For each exposure time, the value of the mean signal was
controlled by the C2 lens excitation.
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a larger effective signal by improving the visibility (better spatial
coherence). Hence there exists an optimum signal strength that
produces the largest effective signal and the smallest phase error.
For signal strengths less than the optimum the phase measure-
ment becomes noise limited, whereas for signals greater than the
optimum the measurement becomes coherence limited.

5.2. Time-dependent visibility

The above results concerned the spatial coherence of the wa-
vefield via the signal strength. In particular, the exposure time was
kept constant. However, the visibility has a time-dependent
component that is governed by the instability of the instrument.
Here we have investigated the fringe displacement as a function of
time, via the acquisition of 1000 blank holograms over 67 min. The
fringe displacement was tracked via the phase of the sideband's
Fourier component. The result is shown in Fig. 4. Firstly, we ob-
serve that the fringes moved initially in a negative direction and
then a positive direction. Secondly, the movement consists of
smaller random fluctuations residing on a more slowly varying,
near-linear movement. The time scale of the random component is
seen to be on the order of one minute (inset of Fig. 4(a)). In pas-
sing, we note that similar stochastic behaviour has recently been
observed for the aberrations in high-resolution TEM [22].
Statistical analysis of the fringe displacement is shown in Fig. 4
(b), which plots the average and the root-mean-square (rms)
displacement as a function of the time interval. The average dis-
placement is well modelled by a linear trend with a velocity of
0.6 pm/s. The rms displacement is well modelled by the Langevin
theory (Eq. (9)) with an average time and distance between “col-
lisions” of t 36c ≃ s and d 0.038 nmc ≃ , respectively.

The fitted values of tc and dc allow us to estimate the optimum
exposure time based on Fig. 2. For example, for a fringe spacing of
0.08 nm (applicable to our primary data), the optimum exposure
time is d d t( / ) 18 sc c = . For long exposure times (greater than about
100 sec), the linear component becomes important (or dominant)
and therefore has to be taken into account.

5.3. Normalised effective signal and phase error

The previous subsections have established the general trends of
spatial coherence and instrument instabilities. In this section, we
present an analysis of our primary dataset, where the signal level
and the exposure time are varied systematically. Here we also
introduce the concept of normalised effective signal which has the
benefit of revealing a universal behaviour with respect to the ex-
posure time. It remains to fit our spatial coherence model, which is
done below.

Fig. 5 shows the phase errors obtained from our primary da-
taset. It is observed that the minimum phase error obtained de-
creases with increasing exposure time up to approximately 16 s.
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For greater exposure times, the minimum phase error does not
exhibit a further decrease, and instead the behaviour of the phase
error becomes erratic. This observation is consistent with the
predicted optimum exposure time of 18 s stated in the previous
section: for exposure times of 32 and 64 s, which are well in excess
of the optimum, the fringe displacement becomes, on average,
excessively large, ultimately leading to greater phase errors
(smaller values of the phase error are occasionally observed,
consistent with the stochastic nature of the fringe displacement in
Fig. 4(a)).

The final step in our analysis is to fit the model for the spatial

coherence S N( )^ given by Eq. (5). The fitting of S N( )^ was performed
on the visibility V measured from the primary dataset with a 2 s
exposure time, using a least-squares criterion. This exposure time
was chosen to obtain good statistics while minimising the effects
of instrument instabilities. The fitted parameters were

2.0 10 s5 1/2α = × − , and 2.5 10 s10β = × − . This fitting procedure also
refines a value for the time- and dose-independent part of the
visibility V0¼0.27.

Having fitted all of the parameters in our model, we now
compare it with the results obtained from our primary dataset. To
facilitate the comparison, we consider the normalised effective

signal (N N t/eff eff
^ = ) as a function of the normalised signal

(N N t/^ = ), which reveals the universal trend for all exposure times.
Fig. 6 shows the comparison for selected exposure times. We see

that for exposure times of 0.5 and 2 s, Neff
^ remains virtually un-

changed, reflecting that the time-dependent visibility V t( ) 1≈ for
these times (see Fig. 2). Further increasing the exposure time
eventually results in an overall, but somewhat random, decrease of

Neff
^ , reflecting the decrease in V(t). The measured values of Neff

^ are
well-reproduced by the fitted model. For 32 s, which is well be-
yond the 18 s optimum for this condition, some discrepancy be-
tween the measured values and the model is observed, but this is
expected given the highly stochastic nature of the instabilities at
such long times.
Fig. 6. The normalised effective signal Neff
^ (squares) and the corresponding phase erro

times (indicated top-left of each graph). Also shown are predictions for Neff
^ (dashed line

optimum normalised signal.
Also shown in Fig. 6 are the corresponding phase errors ( ϕΔ ).

Unlike Neff
^ , the phase errors immediately improve (decrease) with

exposure time because they are governed by the effective signal
Neff (not the normalised one). At and beyond the 18 s optimum, the
phase error shows no further improvement (compare 8 and 32 s in
Fig. 6), but instead degrades in a random fashion, in line with the

stochastic behaviour of Neff
^ at these times.

Crucial to the present work, the maximum values of Neff
^ indeed

correspond to minimum values of ϕΔ (as indicated by the dashed

vertical lines in Fig. 6). This confirms that an analysis of Neff
^ is

sufficient for predicting the optimum N̂ and t, which greatly
simplifies the analysis. (On the other hand, it is not possible from a

knowledge of Neff
^ alone to predict the actual value of the mini-

mum phase error ϕΔ , since that value also depends on the detector
gain G, as well as other secondary factors [16].)

5.4. Prediction and verification of optimum conditions

The model presented above can be used to identify the opti-
mum dose rate and exposure time for a given fringe spacing d,
interference width w and pixel size δ. Once the optimum dose rate

N̂ and exposure time t are determined for fixed parameters d0, w0

and δ0, we can use them in conjunction with Eq. (14) and Fig. 2b to
predict the optimum dose rate and exposure time for other sets of
parameters. Table 1 exemplifies this methodology.

Qualitatively speaking, a larger fringe spacing (obtained by
decreasing the biprism voltage) permits a more intense electron
beam (since the spatial coherence requirements are less stringent)
and a longer exposure time (since the stability requirements are
less stringent). A higher magnification (with all other parameters
fixed) implies a reduced optimum dose simply because of the re-
duced flux of electrons at the detector. To verify these predictions,
Table 1 also lists the independently measured optimum dose for
each condition. It can be seen that good agreement is obtained
between the theoretical predictions and experimental
r ϕΔ (stars) as functions of the normalised signal N̂ , plotted for selected exposure
s) based on fitting described in the text. The grey vertical dashed lines indicate the



Table 1
Predicted optimum doses Nopt and exposure times topt for a selection of experimental conditions. The last column lists independently measured values of Nopt (except that

marked “*”, which is not an independent measurement).

Mode M δ (nm) VBP (V) d (nm) w (nm) Nopt topt (s) Nopt Meas.

Standard 450k 0.019270.001 150 0.08470.002 3170.2 316 18 315 64*±
Standard 940k 0.008870.002 70 0.17570.002 16.2470.2 242 46 225745
Standard 1950k 0.004270.003 65 0.17670.006 16.3770.2 54 46 60715
Lorentz 62k 0.22570.01 150 0.9870.025 36479 316 18 368780
Lorentz 62k 0.22570.01 87 1.66670.06 17678 1349 45 12007200
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measurements. The error in the measured optimum dose was
chosen to correspond to a 5% reduction in the effective signal. This
accounts for the fact that the intensity varies slowly around the
optimum, so that electron doses falling within the error satisfies
the optimum dose condition to a good level of accuracy.

The above methodology also applies to Lorentz mode. This
mode produces a larger field of view because of the reduced
magnification between the specimen and the biprism. Notwith-
standing this, given the results in Fig. 3, we anticipate that Lorentz
mode does not significantly affect the spatial coherence envelope

S N( )^ . This prediction is verified experimentally in Fig. 7 where the
excitations of the post-biprism lenses were purposely kept iden-
tical. Furthermore, we do not anticipate any significant change in
the instrument instabilities responsible for the time-dependent
visibility V(t). Hence our analysis in standard mode can be directly
applied to Lorentz mode, provided that the change in specimen
magnification is accounted for. The last two rows in Table 1 apply
to Lorentz mode.
6. Extension to elliptical illumination

While the methodology described above assumed round illu-
mination, it is easily extended to the case of elliptical illumination.
The only aspect of the model requiring alteration is the spatial
coherence envelope, which becomes

S N e( ) . (15)bw N bw N( / ) ( / )2 2 2 2^ = α δ β δ− ′ ^ − ′ ^

where b is the semi-minor axis of the ellipse (i.e., b2 is the size of
the illumination measured parallel to the biprism wire). Note the
Fig. 7. Comparison of standard mode and Lorentz mode for (virtually) identical
excitations of the post-biprism lenses. The graph shows the normalised effective
signal (squares) and the phase error (stars) for a standard mode magnification of
450k (blue) and a Lorentz mode magnification of 67k (red), plotted as a function of
normalised signal. The biprism voltage was 150 V. The exposure time was 1 s. (For
interpretation of the references to colour in this figure caption, the reader is re-
ferred to the web version of this paper.)
appearance of N̂ and N
2^ in Eq. (15) (as opposed to N

1/2^ and N̂ in Eq.
(5)), which implies that the parameters α′ and β′ differ from α and
β (hence the primes). Despite these differences, the underlying
effective source model remains the same.

With Eq. (15), the optimisation proceeds almost exactly as be-
fore, except that the set of fixed parameters d, w and δ now in-
cludes b. In practice, b is chosen to be as small as possible while
still providing uniform illumination across the field of view. In-
stead of Eq. (12), the optimum dose rate for elliptical illumination
is given by

N N t N
bw

max ( , )
4

4
.

(16)N
eff

2 2δ α β α
β

^ ⟹ ^ =
+ −

^

Instead of Eq. (14), the optimum dose rate is scaled for other
conditions according to

N
b w

bw
N

/
/

.
(17)

0 0 0
2

2 0
δ

δ
^ = ^

Experimentally, since b is fixed, the variation and optimisation

of N̂ is now controlled by “stretching” the illumination across the
biprism, using, for example, a combination of the C2 lens and the
condenser stigmators.
7. Conclusions

To facilitate the optimisation of phase errors in electron holo-
graphy, we have established a relatively simple and yet sufficiently
accurate model that can be fitted using a minimal experimental
dataset. Once fitted, the model is capable of predicting the opti-
mum dose rate and exposure time for any given combination of
biprism voltage and magnification for a single exposure, either in
standard mode or Lorentz mode. The optimum dose rate and ex-
posure time produce the smallest-possible phase error for the
given conditions on a particular instrument, not explicitly taking
into account specimen considerations. In the presence of specimen
drift and/or dose-dependent specimen damage, the optimum dose
rate remains entirely valid, although the exposure time may need
to be reduced accordingly.

Experimental studies were undertaken to verify the models of
the spatial coherence and instrument instabilities that are re-
quired for the optimisation. We found that the commonly used
Gaussian model is not suitable to describe the spatial coherence,
and instead a bivariate Cauchy distribution convoluted with a
Gaussian distribution is better suited. The fringe movement due to
instabilities is well-modelled by the Langevin theory of Brownian
motion, which improves upon previous models since it is applic-
able to the practical range of exposure times used in experiments.

We conclude with a recipe for obtaining optimum dose and
exposure time using our model: in addition to a knowledge of the
biprism width, two sets of blank holograms are required, each set
using the same biprism voltage and magnification (i.e., the pri-
mary values of d, w and δ). The first set is acquired as a function of
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intensity (e.g., by changing the C2 lens) using a short exposure
time to minimise instabilities (e.g., 1 s). The fringe visibilities in

this set are used to fit the spatial coherence envelope S N( )^ . The
second set consists of a time series, acquired over a long timespan
(e.g., 1 h), again using a short exposure time for each hologram.
The fringe positions in this set are used to fit the time-dependent
visibility V(t). Once the model has been fitted, it can be used to
predict the optimum dose rate and exposure time for other con-
ditions. Alternatively, the optimum dose rate for the initial con-
dition can be scaled to other biprism voltages and magnifications
using Eq. (14).
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