Preface

This book on the *Basic Matters* of quantum mechanics grew out of a set of lecture notes for a second-year undergraduate course at the National University of Singapore (NUS). It is a first introduction that does not assume any prior knowledge of the subject. The presentation is rather detailed and does not skip intermediate steps that — as experience shows — are not so obvious for the learning student.

Starting from the simplest quantum phenomenon, the Stern–Gerlach experiment with its choice between two discrete outcomes, and ending with the standard examples of one-dimensional continuous systems, the physical concepts and notions as well as the mathematical formalism of quantum mechanics are developed in successive small steps, with scores of exercises along the way. The presentation is "modern", a dangerous word, in the sense that the natural language of the trade — Dirac's kets and bras and all that — is introduced early, and the temporal evolution is dealt with in a picture-free manner, with Schrödinger's and Heisenberg's equations of motion side by side and on equal footing.

Two companion books on *Simple Systems* and *Perturbed Evolution* cover the material of the subsequent courses at NUS for third- and fourth-year students, respectively. The three books are, however, not strictly sequential but rather independent of each other and largely self-contained. In fact, there is quite some overlap and a considerable amount of repeated material. While the repetitions send a useful message to the self-studying reader about what is more important and what is less, one could do without them and teach most of *Basic Matters*, *Simple Systems*, and *Perturbed Evolution* in a coherent two-semester course on quantum mechanics.

All three books owe their existence to the outstanding teachers, colleagues, and students from whom I learned so much. I dedicate these lectures to them.

I am grateful for the encouragement of Professors Choo Hiap Oh and Kok Khoo Phua who initiated this project. The professional help by the staff of World Scientific Publishing Co. was crucial for the completion; I acknowledge the invaluable support of Miss Ying Oi Chiew and Miss Lai Fun Kwong with particular gratitude. But nothing would have come about, were it not for the initiative and devotion of Miss Jia Li Goh who turned the original handwritten notes into electronic files that I could then edit.

I wish to thank my dear wife Ola for her continuing understanding and patience by which she is giving me the peace of mind that is the source of all achievements.

Singapore, March 2006

 $BG\ Englert$

Contents

Pr	eface	vii		
1.	A Brutal Fact of Life			
	1.1 Causality and determinism	1		
	1.2 Bell's inequality: No hidden determinism	4		
	1.3 Remarks on terminology	8		
2.	Kinematics: How Quantum Systems are Described	11		
	2.1 Stern–Gerlach experiment	11		
	2.2 Successive Stern–Gerlach measurements	14		
	2.3 Order matters	17		
	2.4 Mathematization	17		
	2.5 Probabilities and probability amplitudes	23		
	2.6 Quantum Zeno effect	32		
	2.7 Kets and bras	35		
	2.8 Brackets, bra-kets, and ket-bras	38		
	2.9 Pauli operators, Pauli matrices	41		
	2.10 Functions of Pauli operators	44		
	2.11 Eigenvalues, eigenkets, eigenbras	46		
	2.12 Wave-particle duality	51		
	2.13 Expectation value	51		
	2.14 Trace	54		
	2.15 Statistical operator	56		
	2.16 Mixtures and blends	60		
	2.17 Nonselective measurement	61		
	2.18 Entangled atom pairs	63		

	2.19 State reduction							
	2.20 Measurements with more than two outcomes							
	2.21	1 Unitary operators	75					
	2.22	2 Hermitian operators	78					
3.	Dynamics: How Quantum Systems Evolve							
	3.1	Schrödinger equation	81					
	3.2	Heisenberg equation	85					
	3.3	Equivalent Hamilton operators	87					
	3.4	von Neumann equation	88					
	3.5	Example: Larmor precession	89					
	3.6	Time-dependent probability amplitudes	93					
	3.7	Schrödinger equation for probability amplitudes	94					
	3.8	Time-independent Schrödinger equation	98					
	3.9	Example: Two magnetic silver atoms	101					
4.	Motion along the x Axis							
	4.1	Kets, bras, wave functions	109					
	4.2		114					
	4.3 Momentum operator							
	4.4 Heisenberg's commutation relation							
	4.5 Position-momentum transformation function							
	4.6 Expectation values							
	4.7	-	125					
	4.8	State of minimum uncertainty	129					
	4.9		132					
	4.10 Excursion into classical mechanics							
	4.11 Hamilton operator, Schrödinger equation							
			139					
5.	Elementary Examples							
	5.1	Force-free motion	141					
		5.1.1 Time-transformation functions	141					
			143					
			149					
		5.1.4 Interlude: General position-dependent force	155					
		5.1.5 Energy eigenstates	157					
	5.2	Constant force	160					

xi

	5.2.1	Energy eigenstates	100
	5.2.2	Limit of no force	162
5.3	Harme	onic oscillator	165
	5.3.1	Energy eigenstates: Power-series method	165
	5.3.2	Energy eigenstates: Ladder-operator approach	170
	5.3.3	Hermite polynomials	176
	5.3.4	Infinite matrices	177
5.4	Delta	potential	181
	5.4.1	Bound state	181
	5.4.2	Scattering states	186
5.5	Squar	e-well potential	191
	5.5.1	Bound states	191
	5.5.2	Delta potential as a limit	196
	5.5.3	Scattering states. Tunneling	197
Index			203