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Events

Quantum mechanics can be used to predict probabilities —
probabilities for what? For events!
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Rudolf Haag, Commun. Math. Phys. 132 (1990) 245-257:
Events

— are localized in space and in time

— have an element of irreversibility

— are linked by particles, so that a causal history evolves

— are needed to give meaning to a space-time structure

— typically need to be amplified to be noticeable by human observers

Short-range interactions are crucial for the localization of events.
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Nonlocality?

A referee report:

The authors claim that they have a proposal for an experiment that
would demonstrate non-locality for a single photon. [...] there is no
fundamental non-locality in quantum phenomena. Quantum
mechanical processes are fundamentally local in the very definite
sense that observations in space-like separated regions are
independent. Technically speaking, the observables (elements of an
operator algebra) of one region commute with all observables of the
other region. Rudolf Haag’s monograph on Local Quantum Physics
(Springer, 1992) is recommended reading. All interactions considered
in [...] are of the usual local kind.

The arbiter's comment:

The reviewer is correct to say that there is no fundamental
non-locality in QM in the sense that information cannot be transmitted
between space-like separated observers. However, in the present
context, the phrase non-local is really a shorthand for “any realistic
hidden variable theory capable of reproducing the results would have
to be non-local”. Workers in the field take this for granted, . ..
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Generalized measurements

Single-photon polarimetry:

Probability of a click in the kth detector: px = tr {Txp} where p is the
statistical operator for the polarization of the incoming photon and Iy
is the probability operator for the kth detector.
The Ngs make up a probability-operator measurement (POM), vulgo
a positive-operator-valued measure (POVM):

Mg >0, anzl
k
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Murky Interpretation?

From the Introduction to a recent paper:

It is remarkable, that a century after the discovery of quantum
mechanics, it seems that we are no closer to a consensus about its
interpretation, than we were in the beginning. The collapse of the
guantum state at the process of measurement which appears in all
textbooks of quantum theory does not have an unambiguous
definition and a reasonable explanation.

[...] some radical changes in our classical understanding of reality
have to be made; e.g. constructing a physical process of collapse,
accepting the existence of parallel worlds, or adding non-local hidden
variables.

Rebuttal:

In fact, the is no lack of consensus, because the interpretation of a
physical theory is simply the link between the mathematical symbols
and the physical phenomena, such as px = tr {[xp} (Born's rule).

If you endow the symbols with more meaning than that, you yourself
are responsible for the consequences — and don’t blame quantum
mechanics if you end up in dire straits.
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Two kinds of evolution?

Folklore: “According to von Neumann there are two kind of evolution:
unitary evolution between measurements, and sudden collapse at the
time of measurement.”

Really? Reconsider p = tr {l1p} where N and p are functions of the
dynamical variables Z (t) with, possibly, a parametric time
dependence as well, and all such operator-valued functions evolve in
accordance with Heisenberg’s equation of motion,

d 0 1

In particular, we have % p = 0: the statistical operator is constant, as
it should be because it represents our knowledge about the
preparation of the system: p(Z(t),t) = p(Z (to), to)-

The “sudden collapse” is the state reduction by which we update p

when we learn something new about the system.
State reduction is not a physical process, it is not evolution.
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State reduction ...

. is not particular to quantum mechanics. It is a book-keeping
device of all statistical formalisms.

My wallet before:

$$/0 1 2 3 4 5 6 7 8 9 10
prob [0 0 056 0 0 O O O O O 05
My wallet after:

$$/0 1 2 3 4 5 6 7 8 9 10
prob [0 0 0 0 0 0 O 1 0 O O
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Action at a distance?

A recent news item:

Quantum theory makes the distinctive prediction that non-local
correlations are instant: for example, a measurement of the
polarization of one of a pair of quantum-entangled photons should
immediately set the polarization of the other, no matter how far the
photons are apart, without either photon’s polarization being in any
way predetermined.

Rebuttal: | told you: “you yourself are responsible for the
consequences”, | really did.

Here: Don’t make the mistake of regarding the statistical operator (or
the wave function for that matter) as a physical object. There is Alice’s
statistical operator for Bob’s photon, and there is Bob’s statistical
operator for Bob’s photon, and they can very well be different and
both correct.
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The Heisenberg cut

The cut is needed. By its nature, it cannot be precise.
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Schrddinger’'s -eat- coin

Two macro-states: p; = ATA, p, = BB
Superpositions: py = 3(A+£B)T(AL£B) = 1(p1 + p2) + 3(ATB + BTA)

No way to distinguish between p, and p_ because you wouldn’t know

how; in addition, the cross terms are ineffective (G. Stif3mann 1958,
A. Peres 1980, . ..); the phenomenology is that of p = %(pl + p2).

“But, in principle, | could ... Dirac, von Neumann ... one-to-one
correspondence ...”
No, you cannot.

For Heisenberg’s dog, see J. Mod. Opt. 45 (1998) 701-711.
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Quantum state estimation

Recent work with

Ng Hui Khoon (postdoc, Singapore)

Zhu Hunangjun, Teo Yong Siah (PhD students, Singapore)
Benjamin Phuah (3rd year student, Singapore)

in collaboration with Z. Hradil, J. Rehagek, and B. Stoklasa (Olomouc)
and D. Mogilevtsev (Minsk)
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Scenario of quantum state estimation

—p1(ny1)
_9 _p2(n2)
source p=r POM  —P3(ng)

—:pK(nK)

The source emits quantum objects whose relevant degrees of
freedom are described by the “true” statistical operator p, which is
unknown.

The probability-operator measurement (POM) has K outcomes [y
that give rise to the “true” detection probabilities px = tr{ply}.

The actual data consist of n1, no, ..., ng detector clicks in one
particular sequence upon measuring a total of N = nq +n + -+ + ng
copies.

State estimation: Exploit the data for an educated guess about p.
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Principles of quantum state estimation

1- Be guided by common sense and the methods of classical
statistical inference.*

2a— Estimate event probabilities from the data, after measuring N
copies.

2b— Determine the estimator p of the state from the estimated
probabilities p1, p2, Ps, . .. and, if necessary, invoke additional criteria
(such as Jaynes’s maximum-entropy criterion).

Note: p, — p\™* for N — oo (“consistency” — largely a tautology).

*Read Edwin Jaynes’s Probability Theory — The Logic of Science and don't
ignore his advice.
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Tossing a coin (1)

Parameter to be estimated: p = probability of getting “head”.
Observed data: n times “head” and N — n times “tail”.

Likelihood for the observed outcome: £(n,N —n|p) = p"(1 — p)N".

Maximum-likelihood (MaxLik) estimator:

p suchthat £(n,N —n|p)= mng(n, N —n|p).

One finds pw. = % = relative frequency for “head”.

Note: Only the relative frequency matters.
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Tossing a coin (2)

Likelihood for heads only and no tails
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Tossing a K -sided die
Parameters to be estimated: probabilities py,p- ..., px with

K
Z Pk = 1.
k=1

K
Observed data: nq,n,,...,nk occurrences for N = Z nk tosses.
k=1

Likelihood for the observed outcome:

K
L(nlp) = L(ng, ..., m[p, ... pi) = [ o™
k=1

MaxLik estimator: p such that £(n|p) = max L(n|p).
Onefinds  (pk)w = % = relative frequency for kth outcome.

Note: Only the relative frequencies matter.
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Bayesian mean estimator

Idea (“applied common sense”): Regard the likelihood as a relative
weight for the true values.

J(dp) L(n|p) p
J(dp) £(n|p)

to the parameter space element associated with dp; dp, --- dpk.

Estimator: pye = with (dp) = a-priori weight assigned
A-priori weight: (dp) = dp; dp; - - - dpk f(p) with Bayesian prior f(p).

Rules and regulations: f(p) > 0 for all permissible p;

f(p) = 0 for all non-permissible p;

/(dp)ﬁ(n|p) < oo when n # 0.
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K -sided die revisited

Simplest prior: f(p ( Zpk) p1p2 - pK)’B*l with 8 > 0

(leaving condltlons pk > 0 implicit).

ng + 3
N+ BK

This gives  (Px)(2 =

Nk . .
Note 1: We recover (px )y = Wk in the limit 8 — 0.

Note 2: The ME estimator looks as if we were computing the ML
estimator for counts ng + 3, that is after adding 3 fake counts to each
outcome. Such “add-3” estimators are sometimes used as ad-hoc
corrections for ML estimators that are conceived as implausible.

Can we get non-ML estimators without any ad-hoc features?
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Estimation error — Estimation risk

Error = Distance between estimator and true state.

Here, squared Euclidean distance:

K
Z (P — Px)?
k=1

where p is the estimator for data n = {n1,Nny, ...} determined by
some chosen strategy (ML, ME-£, .. .).

Risk = Average error

Ri(p) = S 2t 0 e (o 5y

nyiny! -+ ng!

where py is the estimator for prior f(p).
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Constant-risk estimation — Minimax estimation

Constant-risk estimation: Choose the prior f(p) such that R¢(p) is the
same for all p = {p1,p2,...,Px }-

Minimax estimation: Choose the prior f(p) such that the largest risk is
minimized:

Optimal fy such that mfin mgtx Ri(p) = mglx R, ().

Theorem: A constant-risk estimator, if it exists, is also a minimax
estimator.
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K -sided die revisited again
Nk + 8

N + K’

. . VN + vN /K

Constant-risk estimator: = (B=VN/K) _ Mk .
(pk)CR (pk)ME N+ N+ VNK

ML-3 estimator: (px ),(\fE)

Minimax estimator: (pk)ym = (Pk)cr

Note 1: The optimal prior depends on N, the total number of tosses.

Note 2: The constant-risk/minimax estimator is

~ ~ 1 n
(P )wm = (Px)cr = KaN + kaN

#andb —#
VN +1 NN

Note 3: The MM estimator approaches the ML estimator for large N.

with aNn =

Note 4: The constant risk is o % for large N.
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Quantum example: Minimal qubit tomography (1)

1 =
Quantum state: p = 5(1 +5-39).
4

. 1 -
Tetrahedron measurement: Z My = 1 with My = Z(l + 1t - 7)
k=1

1 forj =k,
where tj - ty =

1
—= forj #k.
) 3 for] #
The probabilities px = tr {Tkp} = (1 +1; - §) are constrained
ZA: }
3
k=1

The 4-sided die has no such constraint, but we note that
4

. 3
S (B < 1- 5 (1—bn)? <1

k=1
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Quantum example: Minimal qubit tomography (2)

4
: 1 .
The constraint E pZ < 3 has to be obeyed by the prior f(p), so that
k=1

the priors that are useful for the 4-sided die are not applicable to the
qubit.
Consequence 1: The simple py = rl]\l_k may not be permissible,

so that MaxLik estimation is more complicated.
But it can be done rather easily, and small-N ML
estimators tend to be implausible (we get rank-
deficient states often).

Consequence 2: There is no corresponding constant-risk estima-
tor for the qubit case. And the minimax problem,
in its general form, does not have a known solu-
tion.
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Quantum example: Minimal qubit tomography (3)

Likelihood function:
L(n|p) = pi*py2py’py*, same as for the 4-sided die.

Simplest prior:
f(p) = 5(1 — Z pk) (p1p2p3p4)5_l for the 4-sided die.
k

Two analogs for the qubit:
(@ f(p)=0(1 Zpk) (1-3>" ) (Ppzpopa) "
k

is measurement specific.

(b) f(p)=0(1 Zpk) (1-3)"p?)(cer{p))”"

is state specmc

There is no obvious preference for one of them, and the resulting
difference in the minimax estimators is insignificant.
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Qubit estimation: An act of desperation (1)

. . P —~ 1
Estimator for the 4-sided die: (Pk)cr = (Pk)wm = gan+ %bN.

Ansatz for qubit (a bit of white noise admixed):
P A 1
Pk = (1 = A)(P)vm + Z/\

with A = 0 for most n and \ > 0 for those n for which py,,, is
unphysical.

— N \yith pre-chosen ey > 0 and

4

Condition imposed: » "(p)? < !
k=1

smallest A > 0 such that the condition is obeyed.

Minimax estimator: Determine the optimal value of ey such that we

have minimax estimation within this family of es-
timators.
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Qubit estimation: An act of desperation (2)

Extremal risks (= averaged squared Hilbert-Schmidt distances)

0.12

—min, max risk
0.08r i
v

---min, max risk (ey = 0)

min, max risk (ML)

o min, max risk (ML with ex)

risk
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Qubit estimation: An act of desperation (3)

Optimal ey values

0.25
o « Optimized ey for our estimator
0oL’ o Optimized ey for ML estimator |
0.15f *° ]
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Quantum probabilities — Quantum state (1)

For complete or over-complete data there is a unique statistical
operator p for each consistent (= permissible) set p = {p1, p2, ... } of
estimated probabilities. As a rule, the conversion p — pis not a
complicated procedure.

Example: p = Z pk (6Mx — 1) for qubit tomography with the

tetrahedron measurement

In the case of incomplete data, the estimated probabilities do not
determine the state estimator uniquely. Additional conditions must be
imposed if a unique p is wanted.

One natural possibility is to invoke Jaynes's Principle:

Choose the p with the largest entropy.
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Quantum probabilities — Quantum state (2)

In practice, however, another strategy is often applied: Truncate the
Hilbert space, so that the data is (over-)complete in the restricted
space and then find the unique p there.

We disagree with this practice, because of its lack of justification and
its ad-hoc nature, and much prefer the Jaynes-Principle procedure.
There could also be other acceptable procedures.

The implementation of the maximum-entropy method—in conjunction

with MaxLik estimation, say—is possible with reasonable
computational resources.
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Quantum probabilities — Quantum state (3)

Truncated Hilbert space vs MaxLik-MaxEnt method

)

©

(a) True state

B

(b) 5-dimensional ML estimator  (c) 11-dimensional MLME

estimator

(a) True state

(

3 o 3

b) 8-dimensional ML estimator

(¢) 10-dimensional MLME
estimator

(d) 15-dimensional MLME
estimator
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Outlook

From point estimators to region estimators: How?
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