
Chapter 11

Accessible information about
quantum states:
An open optimization problem

Jun Suzuki, Syed M. Assad, and Berthold-Georg Englert

Abstract We give a brief summary of the current status of the problem
of extracting the accessible information when a quantum system is received
in one of a finite number of pre-known quantum states. We review analyti-
cal methods as well as a numerical strategy. In particular, the group-covariant
positive-operator-valued measures are discussed, and several explicit exam-
ples are worked out in detail. These examples include some that occur in the
security analysis of schemes for quantum cryptography.

11.1 Introduction

A sender, traditionally called Alice, sends quantum states, one by one, to
a receiver, Bob. Bob then wishes to perform measurements on the quantum
states he receives to find out, the best he can, what Alice has sent. Generally
speaking, owing to the nature of quantum mechanics, it is impossible for Bob
to obtain full knowledge about the states which he is receiving. Instead, he has
to choose his measurements judiciously from all measurements permitted by

309

© 2008 by Taylor & Francis Group, LLC



310 11. INFORMATION ABOUT QUANTUM STATES

quantum mechanics. A natural question one might ask is then:

What is the best strategy for Bob to maximize his knowledge
about the states he is receiving from Alice? (11.1)

The answer to this question is not only of importance for our understanding
of the implications of quantum mechanics, it also has great practical signif-
icance for most areas in quantum information, in particular for the capacity
of quantum channels and the security analysis of schemes for quantum cryp-
tography under powerful eavesdropping attacks. Indeed, our own interest in
the matter originates in its relevance to the security of “tomographic quantum
cryptography,” a class of protocols for quantum key distribution developed in
Singapore [1, 2, 3, 4].

The main objective of this chapter is to provide a concise introduction to this
problem with a summary of ongoing research in this field. For this purpose
we will not give a rigorous mathematical exposition, and we will be content
with stating most of theorems without proof. We suggest that readers who are
interested in the technical mathematical details consult the pertinent literature
referred to in the text.

Here is a brief preview of coming attractions. In Section 11.2 we remind
the reader of a few basic concepts and, at the same time, establish the termi-
nology and the notational conventions we are using. Then, in Section 11.3,
we state question (11.1) as an optimization problem, for which the mutual in-
formation between Alice and Bob is the figure of merit. Section 11.4 reports
essential properties of this mutual information and important theorems about
known properties of the solution. A numerical procedure for searching the op-
timum by a steepest-ascent method is described in Section 11.5. Examples are
presented in Section 11.6, where we limit the choice to cases with a structure
as one meets it in the security analysis of quantum cryptography schemes. We
close with a summary and outlook.

11.2 Preliminaries

11.2.1 States and measurements

We set the stage by first providing a brief mathematical description of the
physical situation that (11.1) refers to, that is: Alice sends certain physical
states to Bob who measures them to find out which states she sent. For sim-
plicity and for concreteness, we consider only finite-dimensional systems.
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11.2. PRELIMINARIES 311

The quantum states prepared by Alice are denoted by ρ1, ρ2, . . . , ρJ whereby
J ≥ 1 is finite, and the set E = {ρ j| j = 1,2, . . . ,J} is the ensemble of quantum
states sent by Alice. Each of the ρ js is a density matrix: a semi-definite posi-

tive, and therefore hermitian, matrix with finite trace.1 One calls the jth state
a pure state when the density matrix ρ j is essentially a projector, otherwise it
is a mixed state,

state ρ j is

⎧⎪⎨⎪⎩
pure

mixed

⎫⎪⎬⎪⎭ if

⎧⎪⎨⎪⎩
Tr(ρ2

j ) = (Trρ j)
2 ,

Tr(ρ2
j ) < (Trρ j)

2 .
(11.2)

By convention we normalize the ρ js such that their traces are the probabili-
ties a j with which Alice is sending them. Thus, Bob knows that the probability
of receiving ρ j as the next state is a j = Trρ j. Since the next state is surely one
of the ρ js, these probabilities have unit sum,

1 =
J

∑
j=1

a j =
J

∑
j=1

Trρ j . (11.3)

It follows that the total density matrix ρ = ∑J
j=1 ρ j has unit trace, Trρ = 1.

The rank of ρ is the dimension d of the space under consideration, which is to
say that we represent all ρ js, and all other linear operators, by d×d matrices.2

It is often convenient to represent a pure-state matrix ρ j as a product of a

d-component column
∣∣ j〉 and its adjoint d-component row

〈
j
∣∣ = ∣∣ j〉†, that is

ρ j =
∣∣ j〉〈 j

∣∣. In the standard terminology of quantum physics, one speaks of

kets and bras when referring to the columns
∣∣ j〉 and the rows

〈
j
∣∣, respectively.

The numerical row-times-column product of
〈

j1
∣∣ with ket

∣∣ j2〉 is denoted by〈
j1
∣∣ j2〉 and is called their bracket; it is equal to the trace of their column-times-

row product
∣∣ j2〉〈 j1

∣∣,
Tr
(∣∣ j2〉〈 j1

∣∣)=
〈

j1
∣∣ j2〉 . (11.4)

Bob’s measurement is specified by a decomposition of the d × d identity
matrix 1d into a set of semi-definite positive, hermitian matrices,

1d =
K

∑
k=1

Πk with K ≥ 1 and Πk ≥ 0 , (11.5)

1More generally, a quantum state is specified by a semi-definite positive linear operator with finite
trace and each of its equivalent matrix representations is a corresponding density matrix. By
choosing one particular orthonormal basis in the Hilbert space, we specify one set of density
matrices for the set of states under consideration.
2More generally, d is the dimension of the relevant subspace of a possibly much larger Hilbert
space.
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312 11. INFORMATION ABOUT QUANTUM STATES

which is the general3 form of a so-called positive operator valued measure
(POVM) [5], here with K outcomes Πk. Bob’s a priori probability of getting
the kth outcome is

bk = Tr(ρΠk) , (11.6)

which is properly normalized to unit sum as a consequence of the unit trace of
ρ . Two special cases are worth mentioning: the von Neumann measurements,
and the tomographically complete measurements.

We have a von Neumann measurement when the outcomes of the POVM
are pairwise orthogonal projectors, ΠkΠl = Πkδkl . When all Πks are rank-1
projectors, one speaks of a maximal von Neumann measurement, for which
K = d, of course.

The POVM is tomographically complete if ρ can be inferred from the knowl-
edge of all of Bob’s probabilities bk, which is to say that the map ρ �→ {bk|k =
1, . . . ,K} is injective. A tomographically complete POVM, has at least d2

outcomes; in the case of K = d2, one speaks of a minimal tomographically
complete POVM.

Every outcome of a POVM can be written as a square, Πk = A†
k
A

k
, but this

factorization is not unique.4 Typically, there is one such factorization for each
physical implementation of the POVM. Then, given an ideal—that is, noise-
free and nondestructive—implementation, the final state of the physical system
after the measurement is

ρ (k) =
A

k
ρA†

k

Tr(ρΠk)
(11.7)

if ρ is the state before the measurement and the kth outcome is obtained.
Therefore, in general, the possible final states are mixed states when POVMs
are performed on mixed states.

When Bob performs the POVM (11.5) on the states ρ1, ρ2, . . . , ρJ sent by
Alice, the joint probability that Alice sends the jth state and Bob gets the kth
outcome is

p jk = Tr(ρ jΠk) . (11.8)

The respective marginal probabilities

a j =
K

∑
k=1

p jk = Trρ j , bk =
J

∑
j=1

p jk = Tr(ρΠk) (11.9)

3Somewhat more generally, the label k could be continuous and the summation replaced by an
integration. We do not need to consider such general cases.
4More generally, Πk could be a sum of squares, Πk = ∑l A†

kl
A

kl
, even in the case of a von Neumann

measurement, as is illustrated by A
kl

=V
kl

Π1/2
k

with ∑l V †
kl

V
kl

= 1d for all k. The case of A
k
= Π1/2

k
is sometimes referred to as an ideal POVM.
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11.2. PRELIMINARIES 313

are the probabilities that Alice sends the jth state and the a priori probabilities
that Bob gets the kth outcome.

The conditional probabilities p(k| j) = p jk/a j and p( j|k) = p jk/bk have the
following significance, respectively: If Alice sends the jth state, she can pre-
dict that Bob will get the kth outcome with probability p(k| j); if Bob receives
the kth outcome, he can infer that Alice sent the jth state with probability
p( j|k).

It is worth noting that there is a reciprocal situation with exactly the same
joint probabilities. It is specified by Alice measuring the POVM

1d =
J

∑
j=1

Π̃ j with Π̃ j = ρ−1/2ρ jρ
−1/2 (11.10)

and Bob sending her the states ρ̃k = ρ1/2Πkρ1/2.

11.2.2 Entropy and information

Next, we define several quantities that will be used for the quantification
of information in the sequel [6, 7]: the von Neumann entropy, the Shannon
entropy, the Kullback–Leibler relative entropy, the mutual information, and
the accessible information.

von Neumann entropy: The von Neumann entropy S(ρ) of a density ma-
trix ρ is5

S(ρ) =−Tr

(
ρ

Trρ
log

ρ
Trρ

)
=−Tr(ρ logρ)

Trρ
+ logTrρ , (11.11)

which has the more familiar appearance

S(ρ) =−Tr(ρ logρ) if Trρ = 1 . (11.12)

By construction, we have S(xρ) = S(ρ) for all x > 0. Further we note that the
mapping ρ �→ Tr(ρ)S(ρ) is concave:

Tr(ρ1 + ρ2)S(ρ1 + ρ2)≥ Tr(ρ1)S(ρ1)+ Tr(ρ2)S(ρ2) (11.13)

for any two density matrices ρ1 and ρ2.

5Historically, the von Neumann entropy involves the natural logarithm and also the Boltzmann
constant to establish contact with the thermodynamical entropy, whereas the Shannon entropy
uses the logarithm to base 2 and the value is usually stated in units of bits. We use the logarithm
to base 2 throughout.
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314 11. INFORMATION ABOUT QUANTUM STATES

With the convention λ logλ = 0 for λ = 0, the von Neumann entropy (11.12)
is expressed in terms of the eigenvalues λi (i = 1,2, . . . ,d) of ρ as

S(ρ) =−
d

∑
i=1

λi logλi if
d

∑
i=1

λi = 1 . (11.14)

We remark that the von Neumann entropy is zero for pure states and only for
pure states, for which a single eigenvalue is positive and all others are zero.

Shannon entropy: Given Alice’s ensemble E = {ρ j| j = 1,2, . . . ,J}, we
have the set P = {a j = Trρ j| j = 1,2, . . . ,J} that is composed of the proba-
bilities of occurrence, which have unit sum, ∑ j a j = 1. The Shannon entropy

H(P) of such a normalized set of probabilities P is defined by5

H(P) =−
J

∑
j=1

a j loga j . (11.15)

For any two sets of normalized probabilities P(1) = {a(1)
j
| j = 1,2, . . . ,J} and

P(2) = {a(2)
j
| j = 1,2, . . . ,J}, we can consider their convex sums xP(1) + (1−

x)P(2) = {xa(1)
j

+ (1− x)a(2)
j
| j = 1,2, . . . ,J} with 0 ≤ x ≤ 1, for which the

concavity

H(xP(1) + (1− x)P(2))≥ xH(P(1))+ (1− x)H(P(2)) (11.16)

holds.
As a consequence of the concavity of the von Neumann entropy in (11.13),

we have the inequalities (see, e.g., Subsection 11.3.6 in [7])

H(P)+
J

∑
j=1

a jS(ρ j)≥ S(ρ)≥
J

∑
j=1

a jS(ρ j) , (11.17)

where ρ = ∑J
j=1 ρ j is the total density matrix. On the left, the equal sign

applies if and only if all ρ js are pairwise orthogonal pure states. On the right,
the equal sign applies if the ρ js are essentially equal to each other in the sense
that a jρk = ρ jak for all j and k.

Kullback–Leibler relative entropy: For any two sets of normalized prob-
abilities P = {p j| j = 1,2, . . . ,J} and P̃ = { p̃ j| j = 1,2, . . . ,J}, the Kullback–

Leibler relative entropy D(P||P̃) is defined by

D(P||P̃) =
J

∑
j=1

p j log
p j

p̃ j
≥ 0 , (11.18)
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11.2. PRELIMINARIES 315

whereby the equal sign applies only if p j = p̃ j for all j. The Kullback–Leibler
relative entropy may serve as a rough measure of difference between two prob-
ability distributions P and P̃. But, since it is not symmetric, D(P||P̃) �= D(P̃||P)
as a rule, and does not satisfy the triangle inequality, it is not a distance or met-
ric in the mathematical sense.

Mutual information: For any normalized set of joint probabilities A&B =
{p jk| j = 1,2, . . . ,J; k = 1,2, . . . ,K} with ∑ jk p jk = 1, and its two sets of mar-

ginals A = {a j = ∑K
k=1 p jk| j = 1,2, . . . ,J} and B = {bk = ∑J

j=1 p jk|k = 1,2, . . . ,

K}, the mutual information I(A;B) is the relative entropy between the joint
probabilities A&B and the set AB = {a jbk| j = 1,2, . . . ,J; k = 1,2, . . . ,K} of
product probabilities,

I(A;B) = D(A&B||AB) =
J

∑
j=1

K

∑
k=1

p jk log
p jk

a jbk

= H(A)+ H(B)−H(A&B) , (11.19)

where the last version expresses the mutual information in terms of the various
Shannon entropies.

The mutual information is a measure of the strength of the statistical cor-
relations in joint probabilities. If there are no correlations at all, that is, if
p jk = a jbk for all j and all k, the mutual information vanishes; otherwise it is
positive.

In the physical situation to which the question (11.1) refers, we have the
joint probabilities of (11.8) and the marginals of (11.9). Therefore, the mutual
information I(E ;Π) between E , the ensemble of Alice’s states, and Π, Bob’s
POVM, quantifies his knowledge about the quantum states she is sending. This
brings us, finally, to the accessible information for Bob about Alice’s quantum
states.

Accessible information: The accessible information Iacc is the maximum
of the mutual informations for all possible POVMs that Bob can perform, that
is

Iacc(E ) = max
all Π

I(E ;Π) . (11.20)

This poses the challenge of determining the value of Iacc(E ) for the given set
E of quantum states.

In addition to the accessible information, there are other numerical mea-
sures [8] that can be used for the quantification of Bob’s knowledge about
Alice’s states, such as the Bayes cost (see, e.g., [9, 5]), which is essentially
the probability for guessing wrong, or the probability that Bob can unambigu-
ously identify the state he just received (see, e.g., chapter 11 in [10]). In the
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316 11. INFORMATION ABOUT QUANTUM STATES

context of studying the security of quantum cryptography schemes, however,
the figure of merit is the accessible information. Also, the history of the sub-
ject seems to indicate that it is substantially more difficult to determine the
accessible information than the Bayes cost or the probability of unambiguous
discrimination.

11.3 The optimization problem

We now state the main problem (11.1) in technical terms as a double ques-
tion:

Given an ensemble of quantum states E = {ρ j| j = 1,2, . . . ,J},
(a) what is the value of the accessible information Iacc(E ), and
(b) what is the optimal POVM Π = {Πk|k = 1,2, . . . ,K} for which
the mutual information is the accessible information, I(E ;Π) =
Iacc(E )? (11.21)

Part of the answer to query (b) is to establish the number K of outcomes in the
optimal POVM.

This problem was first formulated by Holevo in 1973 [9]. After more than
three decades, it remains unsolved. The major difficulty is a lack of sufficien-
t conditions that ensure the optimality of POVMs in general. Sufficiency is
known only when the ensemble of quantum states possesses certain symmetry
properties; see Subsection 11.4.4 below. The obvious nonlinearity that origi-
nates in the logarithms is another hurdle.

The current situation is still rather unsatisfactory even for seemingly simple
ensembles E . For instance, we do not have analytical expressions for the opti-
mal POVMs in the case where E consists of only two full-rank mixed quantum
states for d = 2;6 see Subsection 11.6.1 below for details.

There are, of course, very special cases for which the answer is immediate.
One extreme situation is

(i) all states commute with each other, ρ jρ j′ = ρ j′ρ j; then the optimal
POVM is a von Neumann measurement composed of the projectors to
the joint eigenstates. A special case thereof is

6Two mixed single-qubit states in the jargon of quantum information.
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11.4. THEOREMS 317

(ii) all states are pairwise orthogonal, ρ jρ j′ = δ j j′ρ
2
j , so that they can be

distinguished without effort and we have essentially the situation of Bob
receiving a classical signal.

A related, yet different problem is the determination of the so-called quan-
tum channel capacity [7, 11]. A quantum channel turns any input quantum
states into an output quantum state, always preserving the positivity and usu-
ally also the trace of the input. The ensemble E received by Bob, for which he
has to find the optimal POVM, then comes about by processing Alice’s input
ensemble Ein through the quantum channel. There is then a two-fold optimiza-
tion problem: one needs to find both Alice’s optimal input ensemble as well as
Bob’s optimal POVM. The quantum channel capacity problem is also an open
problem. It is clear that any progress with the accessible-information problem
(11.21) means corresponding progress with the channel-capacity problem.

11.4 Theorems

Before going to the actual computation of the accessible information, we
give a brief summary of established properties of the mutual information and
the accessible information [6, 7].

11.4.1 Concavity and convexity

Let us regard the joint probabilities p jk = a j p(k| j) as the product of Alice’s
probabilities a j and the conditional probabilities p(k| j). Then, the mutual in-
formation I(E ;Π) is a concave function of the a js for given p(k| j)s, and a
convex function of the p(k| j)s for given a js. In other words, the mutual infor-
mation is a convex functional on the set of all possible POVMs. Therefore, all
optimal POVMs are located on the boundary of the POVM space.

Since this convexity of the mutual information is of some importance in
our discussion, we give more details. Suppose we have two POVMs Π(i) =
{Π(i)

k
|k = 1,2, . . . ,K}(i = 1,2), then the combined new POVM Π(λ ) = {λ Π(1)

k

+(1−λ )Π(2)
k
|k = 1,2, . . . ,K} with 0 < λ < 1 obeys the following inequality

for the mutual information:

I(E ;Π(λ ))≤ λ I(E ;Π(1))+ (1−λ )I(E ;Π(2)) . (11.22)
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318 11. INFORMATION ABOUT QUANTUM STATES

The equality is satisfied if and only if

p(1)
jk

/b(1)
k

= p(2)
jk

/b(2)
k

or p(1)( j|k) = p(2)( j|k) (11.23)

holds for all j and k, wherein we meet the joint probabilities, p(i)
jk

= Tr(ρ jΠ
(i)
k

)

and the marginals b(i)
k

= ∑J
j=1 p(i)

jk
, as well as the resulting conditional proba-

bilities p(i)( j|k).
A particular situation in which the equal sign applies in (11.22) is as follows.

Let Π(1) and Π(2) be two K-outcome POVMs with null outcomes such that
Π(1)

k
= 0 for k̄ < k ≤ K and Π(2)

k
= 0 for 1 ≤ k ≤ k̄ with 1 ≤ k̄ < K. Then the

outcomes of Π(λ ) are given by Πk(λ ) = λ Π(1)
k

for 1 ≤ k ≤ k̄ and Πk(λ ) =
(1−λ )Π(2)

k
for k̄ < k≤ K, and it is clear that

I(E ;Π(λ )) = λ I(E ;Π(1))+ (1−λ )I(E ;Π(2)) (11.24)

holds in this situation.

11.4.2 Necessary condition

For a POVM Π to be optimal, it is necessary that the accessible information
I(E ;Π) is stationary with respect to infinitesimal variations of Π. These vari-
ations are, however, constrained by both the positive nature of each outcome
Πk and the unit sum of all outcomes.

The first constraint is accounted for by writing Πk = A†
k
Ak, whereby the

factor Ak is rather arbitrary and may differ from the physical Ak in (11.7) by
a unitary matrix multiplying Ak on the left. The second constraint, that is
∑K

k=1 δΠk = 0, then requires the infinitesimal variations of the Aks to be of the
form

δAk = i
K

∑
k′=1

εkk′Ak′ with εkk′
† = εk′k , (11.25)

where the εkk′s are otherwise arbitrary infinitesimal matrices.
We note that the mutual information is expressed as

I(E ;Π) =
K

∑
k=1

Tr(RkΠk) (11.26)

with the hermitian matrices Rk given by

Rk =
J

∑
j=1

ρ j log
p jk

a jbk
. (11.27)
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11.4. THEOREMS 319

It turns out that there is no contribution from the variation of the Rks to

δ I(E ;Π) =−i
K

∑
k,k′=1

Tr
(
εkk′Ak′(Rk′ −Rk)A

†
k

)
. (11.28)

Therefore, a necessary condition for Π to be an optimal POVM is

Ak′(Rk′ −Rk)A
†
k = 0 for all k,k′ , (11.29)

or
Πk′(Rk′ −Rk)Πk = 0 for all k,k′ . (11.30)

Upon summing over k or k′ we arrive at an equivalent set of equations,

RkΠk = ΛΠk and ΠkΛ = ΠkRk for all k , (11.31)

which are adjoint statements of each other because

Λ =
K

∑
k=1

RkΠk =
K

∑
k=1

ΠkRk (11.32)

is hermitian. Mathematically speaking, Λ is the Lagrange multiplier of the
unit-sum constraint in (11.5), and its significance is revealed by noting that
Iacc(E ) = TrΛ for an optimal POVM.

Equations (11.30)–(11.32) have been investigated by Holevo [9]. These e-
quations are nonlinear and there does not seem to be any efficient method for
finding their solutions. Indeed, the 1

2 K(K−1) equations (11.30) are not solved
directly in the numerical approach described in Section 11.5. Rather, we ex-
ploit the observation that (11.28) identifies the gradient in the POVM space.

We remark that a POVM obeying (11.30) is not guaranteed to be an optimal
POVM. Strictly speaking, I(E ;Π) is only ensured to be extremal, but it could
be a local maximum rather than a global maximum, or a local minimum, or
even a saddle point. Whereas local minima and saddle points tend to be unsta-
ble extrema for the numerical procedure of Section 11.5, local maxima are just
as stable as global maxima.

11.4.3 Some basic theorems

We state four basic theorems about I(E ;Π) and Iacc(E ) without proof. The
reader is invited to consult the respective references for proofs and further
details.
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320 11. INFORMATION ABOUT QUANTUM STATES

Theorem 11.1: Number of outcomes
The accessible information is always achievable by an optimal POVM
whose outcomes are rank-1 operators, so that Π2

k = Πk Tr(Πk) for 1≤ k ≤
K. The number of outcomes needed in such an optimal POVM is bounded
by the rank d of the total density matrix ρ , which is also the dimension of
the relevant Hilbert space,7 in accordance with [12]

d ≤ K ≤ d2 . (11.33)

When all quantum states ρ j can be represented as matrices with real num-
bers, then the upper bound is reduced to K ≤ d(d + 1)/2 [13].

(Davies [12]; Sasaki et al. [13])

For the following theorems we introduce two quantities that are defined by

χ(E ) = S(ρ)−
J

∑
j=1

a jS(ρ j)≥ 0 (11.34)

and

χ(E ;Π) =
K

∑
k=1

(
bkS
(
ρ (k))− J

∑
j=1

p jkS
(
ρ (k)

j

))≥ 0 , (11.35)

where ρ (k) is the final total state conditioned on Bob’s kth outcome, as in
(11.7), and ρ (k)

j
is the corresponding conditional final state when ρ j is the

initial state. That is

ρ (k) = AkρA†
k and ρ (k)

j
= Akρ jA

†
k , (11.36)

where the normalizing denominators of (11.7)—respectively Tr
(
ρ (k))= bk and

Tr
(
ρ (k)

j

)
= p jk—are irrelevant here because these conditional density matrices

appear only as arguments of the von Neumann entropy function of (11.11).

Theorem 11.2: Upper bound on I(E ;Π)
The mutual information is bounded by the difference of χ(E ) and χ(E ;Π),

I(E ;Π)≤ χ(E )− χ(E ;Π) . (11.37)

(Schumacher, Westmoreland, and Wootters [14])

7If ρ is embedded in a larger Hilbert space, there is one more outcome in the POVM, namely, the
projector on the orthogonal complement of the range of ρ .
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11.4. THEOREMS 321

Since the term χ(E ;Π) that is subtracted on the right-hand side of (11.37) is
nonnegative and vanishes if and only if all outcomes Πk are of rank 1, we have
I(E ;Π) ≤ χ(E ) for all POVMs, in particular for all optimal POVMs. This
implies the following theorem.

Theorem 11.3: Upper bound on the accessible information
An upper bound on the accessible information is given by

Iacc(E )≤ χ(E ) , (11.38)

the so-called Holevo bound. (Holevo [15])

We remark that the equal sign holds in (11.38) if and only if all quantum
states ρ j commute with each other, and hence the Holevo bound is not tight in
general.

Theorem 11.4: Lower bound on the accessible information
A lower bound of the accessible information is given by

Iacc(E )≥Q(ρ)−
J

∑
j=1

a jQ(ρ j/a j) , (11.39)

wherein the so-called subentropy Q(ρ) of a unit-trace density matrix ρ
with eigenvalues λi (i = 1,2, . . . ,d) is defined by

Q(ρ) =−
d

∑
i=1

(
∏

i′( �=i)

λi

λi−λi′

)
λi logλi . (11.40)

If there are degenerate eigenvalues, one treats them as the limit of nonde-
generate ones. (Jozsa, Robb, and Wootters [16])

We should also mention that one can establish substantially tighter upper and
lower bounds for the accessible information by taking more specific properties
of the ρ js into account than the rather global entropies and subentropies that
enter the right-hand sides of (11.38) and (11.39); see, in particular, the work of
Fuchs and Caves [17, 8].

11.4.4 Group-covariant case

Following Holevo [9], an ensemble E = {ρ j| j = 1,2, . . . ,J} of quantum
states ρ j is said to be covariant with respect to a group G if there exists a
faithful projective unitary representation {Ug|g ∈ G} of G such that

Ugρ jU
†
g ∈ E for all ρ j ∈ E and all g ∈ G . (11.41)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l U
ni

ve
rs

ity
 o

f 
Si

ng
ap

or
e]

 a
t 1

6:
43

 2
6 

D
ec

em
be

r 
20

16
 



322 11. INFORMATION ABOUT QUANTUM STATES

A projective unitary representation of a group G means that for any pair g1,g2

of group elements Ug1
Ug2

= Ug1g2
eiφ(g1,g2) holds with a real phase function

φ(g1,g2). Several remarks are in order.

1. If an ensemble E is covariant with respect to a group G, then E is also
covariant with respect to any subgroup of G.

2. When a group G acts transitively on an ensemble E , then E constitutes
a single orbit of G. In this case the order of the group G is equal to
the number of elements of the ensemble, i.e., G = J, and the group
parameterizes the input states ρ j. Furthermore, Alice’s probabilities of
occurrence are all equal, i.e., a j = 1/J.

3. It is always possible to construct a nonprojective unitary representation
of the group by a central extension of the original group. In other words,
a projective unitary representation is not essential in our discussion.

In this chapter we will only consider nonprojective unitary representations.
In general, a group has a direct sum of irreducible unitary representations of

the form

Ug =
L⊕

�=1

1m�
⊗u�

g , (11.42)

where m� is the multiplicity of inequivalent unitary irreducible representation
of u�

g in d� dimensions, and L is the number of inequivalent irreducible rep-
resentations. By construction one has ∑L

�=1 m�d� = d. The following theorem
[18] is crucial for the discussion below.

Theorem 11.5: Optimal POVM for group-covariant ensemble
Let the ensemble of quantum states E be covariant with respect to the
group G, which has a representation (11.42). Then there exists rank-1
projectors Sm (m = 1,2, . . . ,M), the so-called seeds, whose orbits

Cm =
{

d
G

UgSmUg
†

∣∣∣∣ g ∈ G

}
(11.43)

constitute an optimal POVM with K = M G outcomes. The count M of
the seeds is bounded by

M ≤
L

∑
�=1

m2
� , (11.44)

and the POVM is given by the weighted union of the orbits,

Π =
M⋃

m=1

λmCm =
{

λmd
G

UgSmUg
†

∣∣∣∣ 1≤ m≤M , g ∈ G

}
, (11.45)
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11.4. THEOREMS 323

where the values of the nonnegative weights λm are determined by the i-
dentity decomposition requirement of (11.5). (Davies [12], Decker [18])

We remark the following:

1. The labels k of the outcomes Πk are here identified with the pairs (m,g)
with m = 1,2, . . . ,M and g ∈ G.

2. The construction implies
M

∑
m=1

λm = 1, which is the reason for the normal-

izing factor d
/

G in (11.43).
3. When the group G is irreducible, we have m1 = d and L = 1, and theorem

11.5 reduces to the case studied by Davies and Sasaki et al. [12, 13].
4. Although the group-covariant POVM is an optimal POVM, it may not be

the only one which maximizes the mutual information. In other words,
also for group-covariant ensembles E , the optimal POVM is not unique
as a rule; there can be other POVMs that are as good as the optimal
group-covariant POVM. This situation occurs typically for |G|> d. We
will illustrate this point in several examples in Section 11.6.

5. Since Cm is an orbit, UgSmUg
† and Sm are equivalent seeds. Whereas the

orbits of the optimal group-covariant POVM may be unique, the seeds
are not.

6. When one orbit is enough to attain the accessible information, Schur’s
lemma provides the following restriction on the structure of the seed:

Sm =
L⊕

�=1

d�

d
1m�
⊗ s� , (11.46)

where the s�s are rank-1 projectors in the d�-dimensional subspaces i-
dentified by the decomposition (11.42).

7. If the group G acts transitively on the ensemble E , we have J = |G| and
UgρUg

† = ρ for all g ∈ G, and the marginals are

a j =
K

∑
k=1

p jk =
1
G

, bk =
J

∑
j=1

p jk =
λmd
G

Tr(ρSm) . (11.47)

Bob’s a priori probabilities bk, with k ≡ (m,g), are the same for all
outcomes within one orbit Cm; their unit sum gives

M

∑
m=1

λm Tr(ρSm) =
1
d

. (11.48)
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324 11. INFORMATION ABOUT QUANTUM STATES

11.5 Numerical search

Any numerical procedure that is capable of finding maxima of a function
could be used in the numerical search for the optimal POVM. In particular,
the method of simulated annealing performed well in practice [19]. Such gen-
eral procedures, however, are unspecific; they do not take full advantage of
the structural properties of the mapping Π→ I(E ;Π) and are, therefore, not
tailored to the problem at hand.

One algorithm that exploits the structure of I(E ;Π) is the iterative procedure
of Ref. [20]. It implements a steepest-ascent approach to the extremal points
in the POVM space, locally proceeding into the direction of the gradient of
I(E ;Π) with respect to Π.

The gradient in steepest ascent is essentially composed of the operators that
multiply the infinitesimal increments εkk′ in (11.28). Accordingly, if we choose
the εkk′s proportional to the respective components of the gradient, the altered
POVM will yield a larger value for I(E ;Π) than the original POVM.

More specifically, we put

εkk′ = iα
[
Ak′(Rk′ −Rk)A

†
k

]†
, (11.49)

where the value chosen for the “small” parameter α determines the step size.
For α > 0, the right-hand side of (11.28) is assuredly nonnegative,

ΔI(E ;Π) = α
K

∑
k,k′=1

Tr
([

Ak′(Rk′ −Rk)A
†
k

]†[
Ak′(Rk′ −Rk)A

†
k

])
= α

K

∑
k,k′=1

Tr
(
(Rk′ −Rk)Πk′(Rk′ −Rk)Πk

)≥ 0 , (11.50)

whereby the equal sign applies only if the POVM obeys the necessary condi-
tion (11.30) of an extremal point.

The increment (11.49), which is first-order in α for Ak, gives rise to a term
∝ α2 in Πk, so that we must ensure proper normalization of the improved
POVM. This is the purpose of the T † · · ·T sandwich in

Πk →Π(new)
k

= T †(1d + αG†
k

)
Πk

(
1d + αGk

)
T (11.51)

with Gk = Rk−
K

∑
k′=1

Rk′Πk′ (11.52)

and TT † =
(

1d + α2
K

∑
k=1

G†
kΠkGk

)−1
. (11.53)
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11.5. NUMERICAL SEARCH 325

So, given the ensemble E of Alice’s quantum states with its marginals a j,
the numerical procedure of one round of iteration is as follows. For the present
nonoptimal POVM Π, we evaluate the joint probabilities p jk of (11.8), the
marginals bk, and the Rks of (11.27). Then we choose the step size α > 0,
compute the Gks of (11.52) as well as T of (11.53), and finally determine
the outcomes Π(new)

k
of the improved POVM in accordance with (11.51). In

view of the first-order increase of (11.50), we will have I(E ;Π(new)) > I(E ;Π)
unless α is too large.

The procedure (11.51)–(11.53) is repeated until no further improvement can
be achieved, which happens when the POVM obeys (11.30). Since local mini-
ma and saddle points are numerically unstable, the iteration terminates when a
local maximum is reached.

Several remarks are in order.

1. If the POVM obeys (11.30), the right-hand side of (11.53) is 1d , and then
we have to choose T = 1d to ensure that the iteration halts. Otherwise,
as long as the POVM does not obey (11.30), we have 0 < TT † < 1d

and T =
(

1d + α2 ∑K
k=1 G†

k
Π

k
G

k

)−1/2
U with U unitary and such that

U → 1d when T T † → 1d .

2. Here is an iteration that yields T in a few rounds without the need of
calculating the reciprocal square root of a possibly large matrix: Start-
ing with T0 = 1d compute T1, T2, . . . successively with the aid of the
recurrence relation

Tn+1 = Tn− eiπ/3Tn
[
T †

n

(
TT †)−1

Tn−1d

]
, (11.54)

wherein
(
T T †

)−1 is the given inverse of the right-hand side in (11.53).

As long as the step size α is so small that all eigenvalues of
(
T T †

)−1

are less than 2, which is typically the case in practice without particular
precautions, we have Tn → T with a cubic convergence because

T †
n+1

(
TT †)−1

Tn+1 = 1d +
[
T †

n

(
T T †)−1

Tn−1d

]3
,

implying T †
n

(
T T †)−1

Tn = 1d +
(

α2
K

∑
k=1

G†
kΠkGk

)3n

. (11.55)

3. A quadratically convergent iteration is obtained by the replacement eiπ/3

→ 1
2 in (11.54); this may be preferable if

(
T T †

)−1
is a real matrix and

one wishes to have a real matrix for T as well.
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326 11. INFORMATION ABOUT QUANTUM STATES

4. As mentioned earlier, the POVM resulting from the iteration procedure
(11.51)–(11.53) could be a local maximum rather than a global one. S-
ince there are no known sufficiency conditions for a global maximum,
one cannot prevent convergence toward a local maximum. All numeri-
cal schemes face this generic problem. As a remedy, we run the iteration
many times with different initial POVMs, and so reduce the risk of mis-
taking a local maximum for a global one.

5. Theorem 11.1 states that we can restrict the numerical search to POVMs
with rank-1 outcomes that are no more than K = d2 (or K = 1

2 d(d + 1)
if all ρ js are real) in number. To determine the actual value of K, we
begin with optimizing for K = d, then for K = d +1, then for K = d +2,
until an increase of K no longer gives an increase of the maximal mu-
tual information.—Alternatively, we start with optimizing for K = d2 or
K = 1

2 d(d + 1), and then reduce the number of outcomes by identify-
ing equivalent ones. Outcomes Πk and Πk′ are equivalent if p jk p j′k′ =
p j′k p jk′ for all j and j′, for then Rk = Rk′ , and the pair of outcomes(
Πk + Πk′ ,0

)
is as good as the pair

(
Πk,Πk′

)
. Incidentally, numerical

experience seems to indicate [21] that by choosing the initial K value
substantially larger than d2, so that there will surely be superfluous out-
comes in the POVM, one reduces substantially the risk of ending up in
a local maximum.

6. The choice (11.49) is the basic steepest-ascent strategy where one pro-
ceeds in the direction of the gradient. As usual, convergence is im-
proved markedly when one employs conjugated gradients instead; see
Section 10.6 in [22] or Shewchuk’s tutorial [23] and the references there-
in.

11.6 Examples

11.6.1 Two quantum states in two dimensions

We first consider the simplest example: the situation of two states, E =
{ρ1,ρ2}, in two dimensions, d = rank(ρ1 +ρ2) = 2. Since any 2×2 matrix is
a linear combination of the identity matrix 12 and the three familiar matrices
of Pauli’s matrix vector �σ , we write

ρ j =
a j

2
(12 +�r j ·�σ) , j = 1,2 , (11.56)
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11.6. EXAMPLES 327

for the two quantum states. The Pauli vector�r j is of unit length if ρ j is a pure
state, and shorter if ρ j is a mixed state. The probabilities of occurrence are
both nonzero, 0 < a1 = 1−a2 < 1.

Numerical studies by ourselves and others, such as work by Fuchs and Peres
as reported by Shor [24], strongly suggest the conjecture that there is always
a von Neumann measurement among the optimal POVMs if E is a two-state
ensemble. This observation is very important in practice but, unfortunately, no
proofs seem to exist in the published literature.

Bearing in mind this conjecture, we restrict the search to POVMs of the form

Π1 =
1
2
(12 +�n·�σ ) , Π2 =

1
2
(12−�n·�σ) , (11.57)

where the unit vector�n specifies the POVM. Therefore the optimization of the
POVM amounts to determining the direction of �n, which is an optimization
over two angle parameters.

Then, the joint probabilities p jk = Tr(ρ jΠk) and their marginals are

p11 =
a1

2
(1 + x1) , p12 =

a1

2
(1− x1) ,

p21 =
a2

2
(1 + x2) , p22 =

a2

2
(1− x2) ,

b1 = p11 + p21 =
1
2
(1 + X) , b2 = p12 + p22 =

1
2
(1−X) , (11.58)

wherein
x1 =�n·�r1 , x2 =�n·�r2 , X = a1x1 + a2x2 . (11.59)

They give
I(E ;Π) = a1Φ(x1)+ a2Φ(x2)−Φ(X) (11.60)

with

Φ(x) =
1
2

[
(1 + x) log2(1 + x)+ (1− x) log2(1− x)

]
(11.61)

for the information accessed by the POVM (11.57).
When the two quantum states commute with each other, the two Pauli vec-

tors are parallel, �r1 ‖�r2, and then the optimal POVM is given by �n ‖�r1 ‖�r2.
This covers as well the case that one, or both, of the Pauli vectors vanish-
es. Therefore, in the following we take for granted that r1 = �r1 > 0 and
r2 = �r2 > 0, and denote by θ the angle between the two Pauli vectors,�r1·�r2 =
r1r2 cosθ with 0 < θ < π .

An infinitesimal variation of the unit vector �n is an infinitesimal rotation,
δ�n =�ε××�n, where�ε is an arbitrary infinitesimal vector. The resulting variation
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328 11. INFORMATION ABOUT QUANTUM STATES

of I(E ;Π) is of the form δ I =�ε ·[�n×× (· · ·)], so that �n ‖ (· · ·) if the POVM
(11.57) is optimal.

Since the vector (· · ·) is a linear combination of�r1 and�r2, the POVM vector
�n is such a linear combination as well. In fact, then, the optimization of �n
is reduced to finding its orientation in the plane spanned by�r1 and�r2, which
constitutes a one-parameter problem. Expressed in terms of the angles ϑ1 and
ϑ2 between�n and the Pauli vectors,

x1 =�n ·�r1 = r1 cosϑ1 , x2 =�n ·�r2 = r2 cosϑ2 (11.62)

with 0≤ ϑ1,ϑ2 ≤ π , we have

(sinθ )2�n = (cosϑ1− cosϑ2 cosθ )
�r1

r1
+(cosϑ2− cosϑ1 cosθ )

�r2

r2
. (11.63)

The unit length of�n implies[
cos(ϑ1 + ϑ2)− cosθ

][
cos(ϑ1−ϑ2)− cosθ

]
= 0 . (11.64)

It turns out that the second, not the first, factor vanishes when I(E ;Π) is maxi-
mal, so that the actual constraint is cos(ϑ1−ϑ2) = cosθ , and since the POVM
to −�n is equivalent to the one to �n, we can insist on ϑ2−ϑ1 = θ . The opti-
mization of�n thus amounts to determining ϑ1, say.

With θ = ϑ2−ϑ1 in (11.63), we have

�n =
sinϑ2

sinθ
�r1

r1
− sinϑ1

sinθ
�r2

r2
(11.65)

and the requirement�n ‖ (· · ·) reads

a1r1 sinϑ1 log
(1 + x1)(1−X)
(1− x1)(1 + X)

+ a2r2 sinϑ2 log
(1 + x2)(1−X)
(1− x2)(1 + X)

= 0 ,

(11.66)
which we regard as the equation for ϑ1 as the basic unknown, with ϑ2 = ϑ1 +
θ and x1,x2,X as given in (11.62) and (11.59). The variables a1,a2,r1,r2,θ
specify Alice’s states, and once the value of ϑ1 is determined, Bob’s optimal
POVM is known.

For arbitrary values of a1,a2,r1,r2,θ , there is no known analytical solution
of (11.66). But, as noted by Levitin [25] as well as Fuchs and Caves [17, 8],
there is a notable special situation, for which the solution is known and simple:
the case of detρ1 = detρ2 or

a2
1(1− r2

1) = a2
2(1− r2

2) . (11.67)
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11.6. EXAMPLES 329

When this equation is obeyed, the optimal POVM coincides with the measure-
ment for error minimization [5], that is,

�n =
a1�r1−a2�r2

a1�r1−a2�r2

, (11.68)

so that

x1 =

(
a1r1−a2r2 cosθ

)
r1

a1�r1−a2�r2

,

x2 =

(
a1r1 cosθ −a2r2

)
r2

a1�r1−a2�r2

,

and X =

(
a1r1

)2− (a2r2

)2

a1�r1−a2�r2

. (11.69)

To justify these remarks, we first note that, if�n is of the form (11.68), (11.65)
implies

a1r1 sinϑ1 = a2r2 sinϑ2 , (11.70)

and then (11.66) requires

(1 + x1)(1−X)
(1− x1)(1 + X)

−1 =
(1− x2)(1 + X)
(1 + x2)(1−X)

−1 . (11.71)

The subtraction of 1 serves the purpose of making both sides vanish for x1 =
x2 = X , which solution results in I(E ;Π) = 0 and is, therefore, of no further
interest. Upon dividing by x1− x2, (11.71) turns into

a1(1− x1X) = a2(1− x2X) or a2
1(1− x2

1) = a2
2(1− x2

2) . (11.72)

The identity (a1x1)
2−(a2x2)

2 = (a1r1)
2−(a2r2)

2, which follows from (11.70),
now establishes (11.67) as the condition that, indeed, must be met by Alice’s
states if Bob’s optimal POVM is given by the unit vector in (11.68).

Two details of (11.67) are worth pointing out: It does not involve the angle
θ between the two Pauli vectors; and, irrespective of the probabilities of occur-
rence a1 and a2, (11.67) is always obeyed if both states are pure (r1 = r2 = 1).

11.6.2 Trine: Z3 symmetry in two dimensions

We next discuss the celebrated example of the “trine,” where no von Neu-
mann measurement can achieve the accessible information. This example was
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330 11. INFORMATION ABOUT QUANTUM STATES

proposed and solved partially by Holevo in 1973 [26]. The complete solu-
tion was obtained by Sasaki et al. in their discussion of ZN symmetry in the
two-dimensional Hilbert space [13].

Three pure states ρ j =
∣∣ j〉〈 j

∣∣ ( j = 1,2,3) with equal probabilities of occur-

rence, a1 = a2 = a3 = 1
3 , are given in d = 2 dimensions by their kets

∣∣1〉=
1

2
√

3

⎛⎝−1
√

3

⎞⎠ ,
∣∣2〉=

1

2
√

3

⎛⎝ −1

−√3

⎞⎠ ,
∣∣3〉=

1√
3

⎛⎝1

0

⎞⎠ , (11.73)

or equivalently by their Pauli vectors,

�r1 =
1
2
(−√3,0,−1) , �r2 =

1
2
(
√

3,0,−1) , �r3 = (0,0,1) . (11.74)

These three vectors are coplanar and point to the corners of an equilateral tri-
angle in the xz-plane: they form a trine.

The cyclic symmetry of the trine is made explicit by noting that

∣∣ j〉=
1√
3

⎛⎝ cos( jθ0)

sin( jθ0)

⎞⎠ for j = 1,2,3 with θ0 =
2π
3

(11.75)

and

U
∣∣1〉=

∣∣2〉 , U
∣∣2〉=

∣∣3〉 , U
∣∣3〉=

∣∣1〉 with U =

⎛⎝ cosθ0 −sinθ0

sinθ0 cosθ0

⎞⎠ .

(11.76)
Since U3 = 12, the 2× 2 matrices 12, U , U2 are an irreducible unitary repre-
sentation of Z3 on a real field, the cyclic group of period 3, and the group acts
transitively on the ensemble E = {ρ1,ρ2,ρ3}.

According to Subsection 11.4.4, the outcomes Πk of the optimal POVM can
be generated by these unitary matrices from a seed S:

Πk =
2
3

UkSU−k for k = 1,2,3 with S =
∣∣v〉〈v∣∣ . (11.77)

The seed ket
∣∣v〉 has to be normalized to unit length,

〈
v
∣∣v〉= 1, so we write

∣∣v〉=

⎛⎝ cosθ

sinθ

⎞⎠ , (11.78)
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11.6. EXAMPLES 331

where the angle parameter θ specifies the POVM.

Therefore, the problem is to maximize the mutual information I[θ ] = I(E ;Πθ )
as a function of θ , with

I[θ ] =
1
3

3

∑
j=1

(
1 + cos(2θ + jθ0)

)
log
(
1 + cos(2θ + jθ0)

)
. (11.79)

This function is 1
2 θ0-periodic in θ , I[θ + 1

2 θ0] = I[θ ], because the POVM with
the outcomes of (11.77) and (11.78) does not change as a whole when θ is
replaced by θ + 1

2 θ0. It is, therefore, sufficient to consider the range 0≤ θ <
1
2 θ0, and one verifies easily that the global maximum of I[θ ] is obtained for
θ = 1

6 π = 1
4 θ0. Accordingly, the accessible information is

Iacc(E ;Π) = log
3
2

(11.80)

in the case of the trine.

The optimal POVM of (11.77) with θ = 1
6 π consists of three rank-1 oper-

ators, Πk = 1
3

(
1−�rk ·�σ

)
, with the vectors �rk of (11.74). Thus, whereas the

state ensemble E makes up the trine of�r1,�r2, and�r3, the POVM makes up the
“anti-trine” composed of −�r1, −�r2, and −�r3. Since ρ = 1

2 12 here, the roles of
the trine and the anti-trine are simply interchanged in the reciprocal situation
of (11.10).

When we regard the three two-dimensional kets of (11.73) as spanning a
plane in a three-dimensional space, we can lift them jointly out of this plane
by giving each the same third component. The cyclic symmetry is maintained
thereby. Such a lifted trine actually consists of the edges of an obtuse pyramid.
As Shor established [24], one needs two seeds for the optimal six-outcome
POVM of the lifted trine.

If one lifts the trine by so much that the edges of the pyramid are perpendic-
ular to each other, then clearly a three-outcome POVM of von Neumann type
is optimal. In fact, there is a large range of angles between the edges, around
the perpendicular-edges geometry, for which the optimal POVM has three out-
comes. But for acute pyramids with a rather small angle between the edges,
one needs a four-outcome POVM [3, 27].

Instead of lifting the trine, one can distort it in the original two-dimensional
space, so that the cyclic symmetry is lost. The optimal POVMs for distorted
trines have been found quite recently [28].
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332 11. INFORMATION ABOUT QUANTUM STATES

11.6.3 Six-states protocol: symmetric group S3

As a practical example, we now turn to an application that occurs in the secu-
rity analysis in quantum cryptography. In the raw-data attack on the six-states
version [29] of the BB84 protocol [30], eavesdropper Eve gains knowledge by
discriminating six rank-2 states in d = 4 dimensions [20].

11.6.3.1 States received by Eve

We denote these states by ρ js whereby j = 1,2,3 is a ternary index and
s = ± is a binary index, so that we are dealing with three pairs of states. It is
expedient to use the following 4×4 matrices for the six states:

ρ1± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z 0 0

±z 1 0 0

0 0 1 ±i

0 0 ∓i 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ2± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 0 ±z 0

0 1 0 ∓i

±z 0 1 0

0 ±i 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ3± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 0 0 ±z

0 1 ±i 0

0 ∓i 1 0

±z 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (11.81)

where the parameter ε measures the level of noise between the communicat-
ing parties that results from the eavesdropping, and z =

√
4/ε−3 is a conve-

nient abbreviation. The physically reasonable range of the noise parameter is
0 ≤ ε ≤ 1 but only communications with ε < 2

3 are potentially useful for the
purpose of quantum cryptography. Indeed, we will see below that the optimal
POVMs are structurally different for ε < 2

3 and ε ≥ 2
3 .

The two nonzero eigenvalues of each ρ js are (2−ε)/12 and ε/12, so that all

six probabilities are 1
6 and the six matrices of (11.81) are unitarily equivalent,

ρ js = Ujs ρ1+Ujs
† . (11.82)
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11.6. EXAMPLES 333

Here,

ρ1+ =
∣∣1〉〈1∣∣+ ∣∣2〉〈2∣∣ with

〈
1
∣∣=√ ε

24

(
z,1,0,0

)
and

〈
2
∣∣=√ ε

24

(
0,0,1, i

)
(11.83)

state the spectral decomposition of ρ1+ and so makes its rank-2 nature explicit,
and the unitary matrices Ujs are given by

U1+ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠= 14 , U1− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 0 −1

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

U2+ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U2− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

U3+ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ , U3− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 −1

0 0 −1 0

0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.84)

They form a multiplicative group of order 6 with this group table:

U1+ U1− U2+ U2− U3+ U3−

U1+ U1+ U1− U2+ U2− U3+ U3−

U1− U1− U1+ U3− U3+ U2− U2+

U2+ U2+ U2− U3+ U3− U1+ U1−

U2− U2− U2+ U1− U1+ U3− U3+

U3+ U3+ U3− U1+ U1− U2+ U2−

U3− U3− U3+ U2− U2+ U1− U1+

(11.85)
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334 11. INFORMATION ABOUT QUANTUM STATES

which shows that it is a nonabelian group that is isomorphic to the symmetric
group S3. It is well known that the representation (11.84) is not irreducible. To
get an irreducible representation, we need to carry out the similarity transfor-
mation

Ujs → Ũ js = T−1UjsT (11.86)

with the transformation matrix

T =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1/
√

3 −2/
√

6 0

0 1/
√

3 1/
√

6 −1/
√

2

0 1/
√

3 1/
√

6 1
√

2

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.87)

The transformed unitary matrices give us a direct sum of irreducible represen-
tations for the group,

Ũ1± =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ±1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ũ2± =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ∓1/2 −√3/2

0 0 ±√3/2 −1/2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Ũ3± =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ∓1/2
√

3/2

0 0 ∓√3/2 −1/2

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.88)

They combine a φ0 = 2π/3 rotation and a reflection,

Ũ js = U( j−1)φ0
Σs for j = 1,2,3 and s =± , (11.89)
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11.6. EXAMPLES 335

where

Uϑ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 cosϑ −sinϑ

0 0 sinϑ cosϑ

⎞⎟⎟⎟⎟⎟⎟⎠ , (11.90)

with ϑ taking on the values 0, φ0, 2φ0 for j = 1,2, and 3, respectively, and

Σ+ = 14 = Ũ1+ , Σ− =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠= Ũ1− . (11.91)

Eve’s states ρ js are transformed correspondingly, resulting in

ρ̃1± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z/

√
3 ∓z

√
2/3 0

±z/
√

3 1 0 ±i
√

2/3

∓z
√

2/3 0 1 ±i/
√

3

0 ∓i
√

2/3 ∓i/
√

3 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ̃2± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z/

√
3 ±z/

√
6 ∓z/

√
2

±z/
√

3 1 ∓i/
√

2 ∓i/
√

6

±z/
√

6 ±i/
√

2 1 ±i/
√

3

∓z/
√

2 ±i/
√

6 ∓i/
√

3 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

ρ̃3± =
ε
24

⎛⎜⎜⎜⎜⎜⎜⎝
z2 ±z/

√
3 ±z/

√
6 ±z/

√
2

±z/
√

3 1 ±i/
√

2 ∓i/
√

6

±z/
√

6 ∓i/
√

2 1 ±i/
√

3

±z/
√

2 ±i/
√

6 ∓i/
√

3 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.92)

In summary then, the inputs are generated by the group Ũ js ( j = 1,2,3; s =±)
as

ρ̃ js = Ũ js ρ̃1+Ũ js
†
, (11.93)
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336 11. INFORMATION ABOUT QUANTUM STATES

where

ρ̃1+ =
∣∣1̃〉〈1̃∣∣+ ∣∣2̃〉〈2̃∣∣ with

〈
1̃
∣∣=√ ε

24

(
z,

√
1
3
,−
√

2
3
,0
)

and
〈
2̃
∣∣=√ ε

24

(
0,

√
2
3
,

√
1
3
, i
)

.

(11.94)

11.6.3.2 Eve’s POVM

We find the optimal POVM for Eve by an application of Theorem 11.5. The
group structure for the six-states protocol is given by

Ũg =
3⊕

�=1

(1m�
⊗u�

g) , (11.95)

with unit multiplicity for all � values,

m� = 1 for � = 1,2,3 , (11.96)

and the inequivalent irreducible representations are

� = 1 or � = 2: u1
g± = 1 , u2

g± =±1 for all g ;

� = 3: u3
1± =

⎛⎝±1 0

0 1

⎞⎠ ,

u3
2± =

1
2

⎛⎝ ∓1 −√3

±√3 −1

⎞⎠ ,

u3
3± =

1
2

⎛⎝ ∓1
√

3

∓√3 −1

⎞⎠ . (11.97)

These representations exhaust all inequivalent irreducible representations, s-
ince the sum of the squares of the dimensions of the irreducible representations
is equal to the order of the group. Indeed, 12 + 12 + 22 = 6 holds here.

According to Theorem 11.5, an optimal POVM can be generated by the
same group by means of

Π̃g =
4
6

ŨgS̃Ũg
†
, (11.98)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l U
ni

ve
rs

ity
 o

f 
Si

ng
ap

or
e]

 a
t 1

6:
43

 2
6 

D
ec

em
be

r 
20

16
 



11.6. EXAMPLES 337

with the seed S̃ of the form

S̃ =
3⊕

�=1

d�

4

∣∣ṽ�

〉〈
ṽ�

∣∣ , (11.99)

where d� is the dimension of the respective irreducible representation, and
〈ṽ�|ṽ�〉 = 1 is required for each �. In general, we may need more than one
rank-1 state S̃, and the upper bound is ∑� m2

� = 3. A single seed is, howev-
er, enough to reach the accessible information for the specific example under
consideration.

Hence we write S̃ = |ṽ〉〈ṽ| where

|ṽ〉=

⎛⎜⎜⎜⎜⎜⎜⎝
eiφ1/2

eiφ2/2

eiφ3 cosθ/
√

2

eiφ4 sinθ/
√

2

⎞⎟⎟⎟⎟⎟⎟⎠ , (11.100)

with real angle parameters φ1, . . . ,φ4,θ . Since the global phase is irrelevant,
the value of one of the φ js can be chosen by a convenient convention, and we
set φ1 = 0 from now on.

Upon defining fi by

〈ṽ|ρ̃i±|ṽ〉=
1

24
(1± fi), (11.101)

we find

fi = ηgi−
ε√
3

hi,

gi =
1
2

cosφ2− cosφ3 cosϕi cosθ − cosφ4 sinϕi sinθ ,

hi = sinφ23 sinϕi cosθ − sinφ24 cosϕi sinθ − sinφ34 cosθ sinθ .

(11.102)

Here η = zε/
√

3 =
√

4ε/3− ε2, ϕi = 2π(i−1)/3, and φi j denotes φi j = φi−
φ j. The mutual information I(ρ ,Π) is then given by

I(E ;Π) =
1
3

3

∑
i=1

Φ( fi) , (11.103)

where Φ( ) is the function introduced in (11.61).

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l U
ni

ve
rs

ity
 o

f 
Si

ng
ap

or
e]

 a
t 1

6:
43

 2
6 

D
ec

em
be

r 
20

16
 



338 11. INFORMATION ABOUT QUANTUM STATES

The accessible information is now obtained by maximizing this mutual in-
formation I(E ;Π) over the four parameters φ2,φ3,φ4,θ . With the help of nu-
merical analysis, we observe that increasing the number of seeds does not pro-
vide a larger mutual information than what we get for a single seed.

As we noted above, the cases ε < 2
3 and ε ≥ 2

3 are physically different. This
is reflected in the structural difference between the optimal POVMs in these
two parameter ranges.

Case 0≤ ε < 2
3 : The optimal POVM is given by

φ2 = φ3 = φ4 = 0 and θ = π . (11.104)

In the original representation of (11.81), this is expressed as

|v〉= T |ṽ〉=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
1
√

3

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.105)

The accessible information is

Iacc(E ) =
1
3

Φ(3η/2) (11.106)

with Φ( ) of (11.61) and η as in (11.102). We remark that this optimal POVM
is independent of the noise parameter ε , and all its outcomes are real. These
findings agree with those obtained in [20], which were obtained with the aid
of a numerical search by the method of Section 11.5. This demonstrates the
optimality of this POVM.

Case 2
3 ≤ ε ≤ 1: The optimal POVM has a more complicated structure here,

namely it is specified by

φ2 = − tan−1

√
2(3ε−2)

4−3ε
,

φ3 = tan−1

√
3ε−2

2(4−3ε)
,

φ4 = 0,

θ = π + tan−1

√
3ε−2
2− ε

, (11.107)
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11.6. EXAMPLES 339

where − 1
2 π < φ2,φ3,θ − π < 1

2 π . This POVM amounts to f1 = 1 and f2 =
f3 = 0 in (11.103), so that the accessible information is

Iacc(E ) =
1
3

Φ(1) =
1
3

. (11.108)

We note in passing that there are other POVMs that also give Iacc = 1
3 for the

whole range 2
3 ≤ ε ≤ 1.

11.6.4 Four-group in four dimensions

As a simplest nontrivial group, we study the four-group—r Klein group, or
vierergruppe—which is the noncyclic group of order four. One meets this
group structure in the eavesdropping analysis for the BB84 protocol [31].
Here we give a discussion based on a toy model for the four-group in a 4-
dimensional Hilbert space.

Each of the four quantum states ρ1, . . . ,ρ4 is a rank-2 state, and the total state
ρ = ρ1 + · · ·+ ρ4 has rank 4, and we have equal probabilities of occurrence:

ρ j =
∣∣ψ j

〉〈
ψ j

∣∣+ ∣∣φ j

〉〈
φ j

∣∣ with Trρ j =
1
4

(11.109)

and

∣∣ψ1

〉
∣∣ψ2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

±b

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣ψ3

〉
∣∣ψ4

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

0

±b

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ1

〉
∣∣φ2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

±c

d

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ3

〉
∣∣φ4

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

±c

0

−d

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.110)

Here a,b,c,d are real constants satisfying a2 + b2 + c2 + d2 = 1. We express
these states using unitary matrices Uj as ρ j = Ujρ1Uj

†, whereby

U1

U2

⎫⎪⎬⎪⎭=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 ±1 0 0

0 0 ±1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,
U3

U4

⎫⎪⎬⎪⎭=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 ±1 0

0 ±1 0 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.111)
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340 11. INFORMATION ABOUT QUANTUM STATES

They constitute the four-group with the familiar group table

U1 U2 U3 U4

U1 U1 U2 U3 U4

U2 U2 U1 U4 U3

U3 U3 U4 U1 U2

U4 U4 U3 U2 U1

(11.112)

where we note that the four-group is abelian and has order-2 subgroups con-
sisting of U1 = 14 and either U2 or U3 or U4.

The representation (11.111) is not irreducible. In order to obtain a direct
sum of inequivalent irreducible representations Ũj, we introduce the following
transformation T :

T =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1/
√

2 −1/
√

2 0

0 1/
√

2 1/
√

2 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.113)

As is fitting for an abelian group, the transformed unitary matrices Ũ j = T−1UjT
have diagonal components only:

Ũ1

Ũ2

⎫⎪⎬⎪⎭= diag(1,±1,±1,1) ,
Ũ3

Ũ4

⎫⎪⎬⎪⎭= diag(1,±1,∓1,−1). (11.114)

They are indeed the direct sum of irreducible four-dimensional representations
of the four-group. These representations consist of a direct sum of four d-
ifferent inequivalent representations. Each of inequivalent representations is
one-dimensional. We also note the unit multiplicity for all four representation-
s.

According to Theorem 11.5, we could need as many as 4 seeds. It is im-
portant to know that if we restrict ourself to the single-orbital case, then the
optimal POVM generated by this group cannot have real outcomes. This is
so because the seed has to have a unit length for each component by Schur’s
lemma. Therefore, we encounter the perhaps unexpected situation where we
need a complex seed even though all input states and group representations are
expressed as real quantities. As we will see later, there also exist real seeds
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11.6. EXAMPLES 341

which provide the accessible information, but then we need more than a single
orbit.

We parameterize the seed ket
∣∣ṽ1

〉
by three angle parameters θ1, θ2 and θ3,

|ṽ1〉=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
1

eiθ1

eiθ2

eiθ3

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.115)

The group generated outcomes of the POVM are then given by

Π̃k = Ũk

∣∣ṽ1

〉〈
ṽ1

∣∣Ũ†
k =

∣∣ṽk

〉〈
ṽk

∣∣ , (11.116)

and the optimization requires the determination of the three θks.
Corresponding to the transformation on the unitary matrices, the quantum

states ρ j are transformed into ρ̃ j = T−1ρ jT , or |ψ̃ j〉 = T−1|ψ j〉 and |φ̃ j〉 =
T−1|φ j〉. Explicitly we have

∣∣ψ̃1

〉
∣∣ψ̃2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

±b/
√

2

∓b/
√

2

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣ψ̃3

〉
∣∣ψ̃4

〉
⎫⎪⎬⎪⎭=

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
a

±b/
√

2

±b/
√

2

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ̃1

〉
∣∣φ̃2

〉
⎫⎪⎬⎪⎭ =

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

±c/
√

2

±c/
√

2

d

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣φ̃3

〉
∣∣φ̃4

〉
⎫⎪⎬⎪⎭=

1
2

⎛⎜⎜⎜⎜⎜⎜⎝
0

±c/
√

2

∓c/
√

2

−d

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.117)

For ρ̄ j defined by

ρ̄ j = 〈ṽ1|ρ̃ j|ṽ1〉= |〈ṽ1|ψ̃ j〉|2 + |〈ṽ1|φ̃ j〉|2, (11.118)

we find

ρ̄1,2 =
1

16

[
1− (b2− c2)cos(2θ−)∓2

√
2absinθ+ sinθ−

±2
√

2cd cos(θ+−θ3)cosθ−
]
,

ρ̄3,4 =
1

16

[
1 +(b2− c2)cos(2θ−)±2

√
2abcosθ+ cosθ−

±2
√

2cd sin(θ+−θ3)sin θ−
]
, (11.119)
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342 11. INFORMATION ABOUT QUANTUM STATES

where θ± = (θ1±θ2)/2. Finally, the mutual information is expressed as

I(E ;Π)[θk] =
1
4

4

∑
j=1

(16ρ̄ j) log(16ρ̄ j) , (11.120)

which is to be regarded as a function of the three θks.
The general solution to this optimization problem is not known as yet. But

if the parameters b and c are equal, we have the analytical solution at hand.
Upon setting b = c, the ensemble of states is characterized by two indepen-

dent parameters because a, b, and d must obey a2 + d2 + 2b2 = 1. We define
A and θ0 by

A = 2b
√

2(a2 + d2) = 2b
√

2(1−2b2) ,

θ0 = tan−1 d
a

. (11.121)

The expression for the mutual information then simplifies to

I(E ;Π)[θk] =
1
2

2

∑
j=1

Φ( f j), (11.122)

where f1 and f2 are

f1 = A
[
cosθ0 sin θ+ sinθ−− sinθ0 cos(θ+−θ3)cosθ−

]
,

f2 = A
[
cosθ0 cosθ+ cosθ−+ sinθ0 sin(θ+−θ3)sinθ−

]
. (11.123)

The partial derivatives with respect to the θks are

∂
∂θ1

I[θk] =
A
8

[
cosθ0 sin θ1 log

R1

R2
+ sinθ0 sin(θ1−θ3) log(R1R2)

]
,

∂
∂θ2

I[θk] =
A
8

[
−cosθ0 sinθ2 log(R1R2)+ sinθ0 sin(θ2−θ3) log

R1

R2

]
,

∂
∂θ3

I[θk] = − sinθ0A

8

[
sin(θ1−θ3) log(R1R2)+ sin(θ2−θ3) log

R1

R2

]
,

with R j =
1 + f j

1− f j
. (11.124)

The right-hand sides are of the form Xi logR1 +Yi logR2, and the necessary
conditions for stationary points, that is: ∂

∂θi
I[θk] = 0 for i = 1,2,3, are then

equivalent to

(XiYj−XjYi) logRl = 0 for l = 1,2 and i, j = 1,2,3 . (11.125)
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11.6. EXAMPLES 343

Since logR1 = logR2 = 0 gives zero mutual information, the coefficients must
be zero, i.e.,

XiYj−XjYi = 0 for (i, j) = (1,2),(2,3),(3,1) . (11.126)

Explicitly, they are

cos2 θ0 sinθ1 sinθ2 + sin2 θ0 sin(θ1−θ3)sin(θ2−θ3) = 0 ,[
cosθ0 sinθ2 + sinθ0 sin(θ1−θ3)

]
sin(θ2−θ3) = 0 ,[

cosθ0 sinθ1− sinθ0 sin(θ2−θ3)
]

sin(θ1−θ3) = 0 , (11.127)

two of which imply the third. One verifies immediately that

θ1 = θ0 , θ2 =−θ0 , θ3 =−π
2

(11.128)

solve these equations, and this solution gives the accessible information.
The optimal POVM thus found consists of a single orbit with the seed ket

given by

|v1〉= T |ṽ1〉=
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
1

√
2isin θ0√
2cosθ0

−i

⎞⎟⎟⎟⎟⎟⎟⎠ (11.129)

in the original representation of (11.109). This corresponds to f1 = A and
f2 = 0 in (11.123). The resulting accessible information is

Iacc(E ) =
1
2

Φ(A) =
1
2

Φ
(

2b
√

2(1−2b2)
)

. (11.130)

Rather intriguingly, the accessible information depends only on one of the pa-
rameters.

We next show how to construct a real optimal POVM out of this complex
solution. Split the optimal seed |ṽ1〉 into real and imaginary parts,

|ṽ1〉= |ṽ1r〉+ i|ṽ1i〉 , (11.131)

and consider another set of outcomes generated by the complex conjugate seed

|ṽ∗1〉= |ṽ1r〉− i|ṽ1i〉 . (11.132)
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344 11. INFORMATION ABOUT QUANTUM STATES

These two POVMs give the same joint probabilities and, therefore, the same
amount of mutual information. It then follows from the convexity of the mutual
information (11.22) that a real rank-2 seed

S̃real =
1
2

(|ṽ1〉〈ṽ1|+ |ṽ∗1〉〈ṽ∗1|
)

= |ṽ1r〉〈ṽ1r|+ |ṽ1i〉〈ṽ1i| (11.133)

gives the accessible information as well.
As we mentioned before, the optimal POVM is not unique as a rule. Here we

have already a choice between a POVM with four complex rank-1 outcomes,
its complex conjugate POVM, or a POVM with four real rank-2 outcomes.
These three POVMs can be regarded as equivalent in the sense that they give
rise to the same joint probabilities.

In addition, there is a one-parameter family of inequivalent POVMs, each
having four real rank-2 outcomes. In the original representation of (11.109)
the outcomes are of the form

Πk = |uk〉〈uk|+ |vk〉〈vk| for k = 1, . . . ,4 (11.134)

with the kets |uk〉 and |vk〉 depending on the real parameter r in the following
way:

∣∣u1

〉
∣∣u2

〉
⎫⎪⎬⎪⎭ =

√
cos2 θ0 + r

2

⎛⎜⎜⎜⎜⎜⎜⎝
1/cosθ0

±√2

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣u3

〉
∣∣u4

〉
⎫⎪⎬⎪⎭ =

√
cos2 θ0− r

2

⎛⎜⎜⎜⎜⎜⎜⎝
1/cosθ0

0

±√2

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

∣∣v1

〉
∣∣v2

〉
⎫⎪⎬⎪⎭ =

√
sin2 θ0 + r

2

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

±√2

1/sinθ0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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11.7. SUMMARY AND OUTLOOK 345

∣∣v3

〉
∣∣v4

〉
⎫⎪⎬⎪⎭ =

√
sin2 θ0− r

2

⎛⎜⎜⎜⎜⎜⎜⎝
0

∓√2

0

1/sinθ0

⎞⎟⎟⎟⎟⎟⎟⎠ . (11.135)

The parameter r is restricted to the range

r ≤min
(
cos2 θ0,sin2 θ0

)
=

min(a2,d2)
a2 + d2 (11.136)

but is otherwise arbitrary. We note that, when r is maximal, the corresponding
optimal POVM has two rank-2 outcomes and two rank-1 outcomes, rather than
four rank-2 outcomes. We note further that the POVM is not group-covariant
when r �= 0.

11.7 Summary and outlook

We have given a brief introduction to, and summary of, the problem of de-
termining the accessible information about a given set of quantum states. At
present, the problem (11.21) remains open because there is no generally ap-
plicable method by which we can determine the optimal POVM and the ac-
cessible information. We note in particular the lack of sufficient conditions by
which one could judge whether a candidate POVM is optimal. Until such con-
ditions are established, the strategy of choice is a combination of a numerical
search—possibly by the method described in Section 11.5—with an analytical
check of the necessary conditions (11.30).

We recall further that the seemingly simple conjecture mentioned after (11.56)
has not been proven as yet. A proof would surely constitute a major step for-
ward because in practice one often encounters the situation of the conjecture,
namely the task of distinguishing optimally between two quantum states.

We also emphasize that obtaining analytical expressions for the optimal
POVM usually requires solving a set of nonlinear equations, and we would
not expect that they can be solved routinely, with closed-form solutions. This
point is well illustrated by the example in Subsection 11.6.1, arguably the sim-
plest nontrivial situation.

In practice, however, we are rarely looking for the accessible information
about random quantum states. Rather, the quantum states of interest tend
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346 11. INFORMATION ABOUT QUANTUM STATES

to possess certain symmetries among them. We can then apply the group-
covariant POVM method of Subsection 11.4.4 for solving the problem as demon-
strated by the examples of Subsections 11.6.2–11.6.4. Nevertheless, the nu-
merical strategy explained in detail in Section 11.5 lends us significant help
in the search for optimal POVMs. A major problem thereby is, of course,
to discriminate between local and global maxima. Further studies are clearly
necessary.

We remark that in general the optimal POVM is not unique for a given set of
quantum states. We have demonstrated this nonuniqueness by the example of
Subsection 11.6.4, where we report an optimal group-covariant von Neumann
measurement, an optimal group-covariant POVM that is not of von Neumann
type, and a family of inequivalent optimal POVMs that are not group-covariant.
From the purely theoretical point of view, these POVMs are equally good in
the sense of providing the accessible information. On the other hand, how-
ever, there are great differences between them when a physical implementa-
tion of the POVM is required. Generally speaking, von Neumann projection
measurements and nonprojection measurements belong to different classes of
measurement schemes.

This suggests that one should examine thoroughly under which conditions
a von Neumann measurement can extract the accessible information about the
given quantum states. The conjecture mentioned above is particularly relevant
in this context.
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