Problem 1

Consider a particle in one-dimensional motion governed by the Hamilton operator

$$H = \frac{1}{2M}P^2 + \frac{1}{2}\gamma(XP + PX),$$

where X(t) is the particle's position operator, P(t) is its momentum operator, M is its mass, and γ is a constant parameter.

- (a) Solve the Heisenberg equations of motion, that is: state X(t) and P(t) in terms of $X(t_0)$ and $P(t_0)$. (10 points)
- (b) Find the commutator $[X(t), P(t_0)]$. (5 points)
- (c) Find the time transformation function $\langle x, t | p, t_0 \rangle$. [Hint: Use the results of parts (a) and (b).] (10 points)

Problem 2

The Hamilton operator

$$H = \hbar \omega A^{\dagger} A + \hbar \Omega (A^{\dagger^2} + A^2)$$

is that of a one-dimensional harmonic oscillator (ladder operators A^{\dagger} and A, circular frequency ω), with a perturbation proportional to $A^{\dagger^2} + A^2$ of strength Ω .

- (a) Find the change in the ground-state energy to second order in Ω . (10 points)
- (b) Determine the exact ground-state energy, and compare it with your result from part (a). [Hint: Express H in terms of position X and momentum P.] (10 points)
- (c) In which range are the reasonable values of Ω ? (5 points)

Problem 3

Consider the one-dimensional Hamilton operator

$$H = \frac{1}{2M}P^2 + \lambda^2 X^4 \,,$$

where X is the particle's position operator, P is its momentum operator, M is its mass, and $\lambda > 0$ determines the strength of the quartic potential.

- (a) Determine the expectation values $\langle P^2 \rangle$ and $\langle X^4 \rangle$ in a state with a Gaussian wave function $\psi(x) = \langle x | \rangle = \pi^{-1/4} \sqrt{\kappa} e^{-\frac{1}{2}\kappa^2 x^2}$ (with $\kappa > 0$.). (8 points)
- (b) Use them to get an upper bound on the ground-state energy E_0 . [Hint: Remember the Rayleigh–Ritz variational principle; optimize the value of κ .] (8 points)
- (c) Now use $\psi(x) = \pi^{-1/4} \sqrt{2\kappa^3} x e^{-\frac{1}{2}\kappa^2 x^2}$ to find a good upper bound on the energy of the first excited state. (9 points)

Problem 4

Orbital angular momentum: vector operator \vec{L} with components L_1 , L_2 , and L_3 . Denote by $|l, m_j\rangle$ the joint eigenkets of \vec{L}^2 and L_j (eigenvalue $\hbar^2 l(l+1)$ of \vec{L}^2 ; eigenvalue $\hbar m_j$ of L_j).

(a) Find the effect on L_1 and L_2 of the unitary transformation associated with L_3 , that is: evaluate

 $e^{-i\varphi L_3/\hbar}L_1 e^{i\varphi L_3/\hbar}$ and $e^{-i\varphi L_3/\hbar}L_2 e^{i\varphi L_3/\hbar}$.

[Hint: Differentiate or, more simply, recall some ladder-operator properties.] (10 points)

- (b) Use the result of (a) for $\varphi = \pi$ to demonstrate that $\langle l, m_1 = 1 | l, m_3 \rangle$ and $\langle l, m_1 = -1 | l, m_3 \rangle$, for instance, differ only by a phase factor. Then conclude that transition probabilities such as $|\langle l, m_1 | l, m_3 \rangle|^2$ do not depend on the signs of the quantum numbers m_1 and m_3 . (5 points)
- (c) Determine the $3 \times 3 = 9$ transition probabilities $|\langle l = 1, m_1 | l = 1, m_3 \rangle|^2$, with $m_1, m_3 = 0, \pm 1$, between the three L_1 states and the three L_3 states to l = 1. [Hint: It's enough to calculate one of the nine numbers, the others can then be inferred by a symmetry argument that exploits the findings of part (b).] (10 points)