
Sample Solution to Problem 1
For n 6= 0 you get
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by the integration method of your choice. For n = 0 you get
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Accordingly,
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which gives
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for t = T/2, that is ωt = π, and
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for t = 0.

Sample Solution to Problem 2
We know that

G(t) =
∫ dω

2π
e−iωtg(ω)

= G(t)∗ =
∫ dω
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∫ dω
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∫ dω
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so that g(ω) = g(−ω)∗ = g(−ω), that is: g(ω) is even and real.



Sample Solution to Problem 3
Simply

x =
b×× c

a · (b×× c)
,

as one verifies immediately by inspection.

Sample Solution to Problem 4
(a) ∇ ·B = (b · r)2∇ · r + r · ∇(b · r)2 = 3(b · r)2 + r · [2b (b · r)] = 5(b · r)2 .
(b) ∇××B = (b · r)2∇×× r+[∇(b · r)2]×× r = 0+ [2b (b · r)]×× r = 2(b · r)b×× r .
(c) Take b = bez, which is to say that we orient the coordinate system such

that the z axis coincides with the direction of b. Then∫
SR
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Sample Solution to Problem 5
∇ · [a(r)B(r)××C(r)] = (B××C) · ∇a + aC · (∇××B)− aB · (∇××C) .


