Problem 1 (25 marks)

Statistical operator ρ is a blend of three projectors,

$$\rho = |1\rangle w_1 \langle 1| + |2\rangle w_2 \langle 2| + |3\rangle w_3 \langle 3|.$$

The respective kets can be represented by two-component columns, and ρ by a corresponding 2×2 matrix,

$$|1\rangle \stackrel{\circ}{=} \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |2\rangle \stackrel{\circ}{=} \frac{1}{5} \begin{pmatrix} 3\\4 \end{pmatrix}, \qquad |3\rangle \stackrel{\circ}{=} \frac{1}{5} \begin{pmatrix} 3\\-4 \end{pmatrix}, \qquad \rho \stackrel{\circ}{=} \frac{1}{20} \begin{pmatrix} 12 & 3\\3 & 8 \end{pmatrix}$$

Determine the values of the weights w_1 , w_2 , and w_3 .

Problem 2 (25 marks)

Operator F is a function of position operator X and momentum operator P that is specified by

$$\langle x|F|p\rangle = e^{-(a|x|+b|p|)/\hbar},$$

where a and b are positive constants. What is $\langle p|F|x\rangle$?

Problem 3 (25 marks)

Operator Λ is a function of position operator X and momentum operator P that is given by

$$\Lambda = \frac{1}{\hbar} (p_0 X + x_0 P) \qquad \text{with} \ x_0 p_0 = \hbar \,.$$

Its eigenvalues λ comprise all real numbers, $\Lambda |\lambda\rangle = |\lambda\rangle\lambda$. Find the position wave function $\langle x|\lambda\rangle$ to eigenket $|\lambda\rangle$ with the convention

$$\langle x|\lambda\rangle = (a x_0 \text{ dependent pre-factor}) \times (a \text{ function of } x/x_0 - \lambda),$$

with the pre-factor determined by the normalization condition $\langle \lambda | \lambda' \rangle = \delta(\lambda - \lambda')$.

Problem 4 (25 marks)

Motion along the x axis with a constant force F acting: position operator X, momentum operator P, Hamilton operator $H = \frac{P^2}{2M} - FX$.

- (a) State the Heisenberg equations of motion for P(t) and X(t), solve them, and evaluate the commutator $[X(t), X(t_0)]$.
- (b) Then find the three right-hand sides in

$$i\hbar \frac{\partial}{\partial x} \log\langle x, t | x', t_0 \rangle = ?, \qquad i\hbar \frac{\partial}{\partial x'} \log\langle x, t | x', t_0 \rangle = ?,$$
$$i\hbar \frac{\partial}{\partial t} \log\langle x, t | x', t_0 \rangle = ?$$

in terms of x, x', and $T = t - t_0$.

[As always, $\log y$ denotes the natural logarithm of y.]