Problem 1 (20=10+10 points)

The state of a particle of mass M is described by the wave function

$$\psi(\vec{r},t) = \left(c_0 + \vec{c} \cdot \vec{r} e^{-\mathbf{i}\omega t}\right) e^{-\frac{1}{2}\kappa^2 r^2},$$

where c_0 and \vec{c} as well as κ and ω are real parameters.

- (a) Find the probability density $\rho(\vec{r}, t)$ and the probability current density $\vec{j}(\vec{r}, t)$.
- (b) Which relation between κ and ω follows from the continuity equation obeyed by $\rho(\vec{r},t)$ and $\vec{j}(\vec{r},t)$?

Problem 2 (30=6+6+10+8 points)

Consider scattering in one dimension (see pages 101–106 of the notes) by the delta potential

$$V(x) = -\frac{\hbar^2}{Ma}\delta(x - L/2),$$

where a is a length parameter with a > 0 (attractive potential) or a < 0 (repulsive potential).

(a) Explain why $\phi(k, x)$ is of the form

$$\phi(k,x) = \begin{cases} \frac{1}{\sqrt{k}} \left[\phi_+(k,0) \,\mathrm{e}^{\mathrm{i}kx} + \phi_-(k,0) \,\mathrm{e}^{-\mathrm{i}kx} \right] & \text{for } x \le L/2 \,, \\ \frac{1}{\sqrt{k}} \left[\phi_+(k,L) \,\mathrm{e}^{\mathrm{i}k(x-L)} + \phi_-(k,L) \,\mathrm{e}^{-\mathrm{i}k(x-L)} \right] & \text{for } x \ge L/2 \,. \end{cases}$$

- (b) Which relation among the "in" amplitudes $\phi_+(k,0)$, $\phi_-(k,L)$ and the "out" amplitudes $\phi_+(k,L)$, $\phi_-(k,0)$ follows from the continuity of $\phi(k,x)$ at x = L/2?
- (c) Why is the derivative of $\phi(k, x)$ discontinuous at x = L/2 as stated by

$$\frac{\partial \phi(k,x)}{\partial x}\Big|_{x=L/2-0}^{x=L/2+0} = -\frac{2}{a}\phi(k,x=L/2)?$$

Use this to find a second relation among the "in" and "out" amplitudes.

(d) Now establish $\alpha = kL$ for the phase on pages 105/106, and then get the scattering matrix $S = \begin{pmatrix} S_{++} & S_{+-} \\ S_{-+} & S_{--} \end{pmatrix}$ from the relations found in parts (b) and (c). Express the matrix elements of S in terms of k and a.

Problem 3 (25=10+9+6 points)

A two-level atom with unperturbed Hamilton operator $H_0 = \hbar \omega \sigma^{\dagger} \sigma$ (see page 65 of the notes) is exposed to a time-independent perturbation that is specified by

 $H_1 = \hbar \Omega(\sigma^{\dagger} + \sigma) \quad \text{with} \quad \Omega > 0.$

At the initial time, the atom is in the ground state $|g\rangle$ of H_0 .

- (a) For short times, the probability $\operatorname{prob}(g \to g, t)$ for remaining in the ground state of H_0 is of the form $\operatorname{prob}(g \to g, t) = 1 (\gamma t)^2$. Determine the value of γ .
- (b) Express $\overline{H_1}(t) = e^{iH_0t/\hbar}H_1e^{-iH_0t/\hbar}$ as a linear combination of σ , σ^{\dagger} , $\sigma^{\dagger}\sigma$, and $\sigma\sigma^{\dagger}$.
- (c) What is the probability, to lowest order in Ω , for finding the atom in the excited state $|e\rangle$ of H_0 after time T has elapsed?

Problem 4 (25=12+3+10 points)

In the Born approximation (see page 125 of the notes), a certain scattering potential $V(\vec{r})$, which is centered at $\vec{r} = 0$, has the scattering amplitude $f(\vec{k}', \vec{k})$ and the differential cross section $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$.

- (a) What are the scattering amplitude $f_+(\vec{k}', \vec{k})$ and differential cross section $\frac{\mathrm{d}\sigma_+}{\mathrm{d}\Omega}$ for the potential $V_+(\vec{r}) = V(\vec{r} \vec{a})$, centered at $\vec{r} = \vec{a}$?
- (b) What are the corresponding $f_{-}(\vec{k}', \vec{k})$ and $\frac{d\sigma_{-}}{d\Omega}$ for $V_{-}(\vec{r}) = V(\vec{r} + \vec{a})$, centered at $\vec{r} = -\vec{a}$?
- (c) Now determine the differential cross section $\frac{d\sigma_2}{d\Omega}$ for the two-center scattering potential $V_2(\vec{r}) = V_+(\vec{r}) + V_-(\vec{r})$.