1. Scattering in one dimension. A particle of mass M moves along the x-axis with energy  $E = \frac{(\hbar k)^2}{2M}$  (k > 0) and is scattered by the double delta potential

$$V(x) = -\frac{\hbar^2}{Ma}\delta(x - L/2) - \frac{\hbar^2}{Ma}\delta(x + L/2)$$

The length parameter a determines the strength of the potential, with a > 0 for an attractive potential and a < 0 for a repulsive potential. As usual, denote the wave function for the given k value by  $\phi(x)$ , and decompose  $\phi(x)$  into the right-moving part  $\phi_+(x)$  and the left-moving part  $\phi_-(x)$ .

(a) Show that the action of the individual delta potentials can be summarized by

$$\begin{pmatrix} \phi_+(0)\\ \phi_-(-L) \end{pmatrix} = \begin{pmatrix} t & r\\ r & t \end{pmatrix} \begin{pmatrix} \phi_+(-L)\\ \phi_-(0) \end{pmatrix} \text{ and } \begin{pmatrix} \phi_+(L)\\ \phi_-(0) \end{pmatrix} = \begin{pmatrix} t & r\\ r & t \end{pmatrix} \begin{pmatrix} \phi_+(0)\\ \phi_-(L) \end{pmatrix}$$

with the transmission amplitude  $t = e^{i(\alpha + \beta)} \cos \beta$  and the reflection amplitude  $r = ie^{i(\alpha + \beta)} \sin \beta$ , where  $\alpha = kL$  and  $\cot \beta = ka$ . [10 marks]

(b) Determine the  $2 \times 2$  scattering matrix for the total scattering potential V(x), that is: find the transmission coefficient R and the reflection coefficient T in

$$\begin{pmatrix} \phi_+(L) \\ \phi_-(-L) \end{pmatrix} = \begin{pmatrix} T & R \\ R & T \end{pmatrix} \begin{pmatrix} \phi_+(-L) \\ \phi_-(L) \end{pmatrix}$$

in terms of t and r.

- (c) Which relation must be obeyed by ka and kL so that the reflection probability  $|R|^2$  vanishes? [5 marks]
- **2. Scattering in three dimensions.** A particle of mass M and wave vector  $\vec{k}$  is scattered by a double Yukawa potential

$$V(\vec{r}) = Y(\vec{r} - \vec{a}) + Y(\vec{r} + \vec{a}) \quad \text{with} \quad Y(\vec{r}) = \frac{V_0}{\kappa r} e^{-\kappa r}$$

where  $\kappa > 0$  and  $V_0 \neq 0$ , and  $\vec{a}$  is parallel to  $\vec{k}$ , that is:  $\vec{k} \cdot \vec{a} = ka > 0$ .

- (a) Find the scattering amplitude  $f(\theta)$  and the differential cross section  $\frac{d\sigma}{d\Omega}(\theta)$ in Born approximation. [12 marks]
- (b) It is observed that no scattering occurs in the three directions for which the scattering angle  $\theta$  is such that  $\cos \theta = 0$  or  $\cos \theta = \pm 2/3$ . How big is the spacing *a* between the scattering centers in terms of the de Broglie wavelength  $\lambda = 2\pi/k$ ? [13 marks]

[10 marks]

**3. Time-dependent interaction.** A two-level atom (ground state ket  $|g\rangle$ , excited state ket  $|e\rangle$ , energy spacing  $\hbar \omega > 0$ , transition operator  $\sigma = |g\rangle\langle e|$ ) is resonant with a single photon mode (harmonic-oscillator ladder operators  $A, A^{\dagger}$ ), to which it couples by the time-dependent Rabi frequency  $\Omega(t)$ . The dynamics is governed by the Hamilton operator  $H(t) = H_0 + H_1(t)$  with

$$H_0 = \hbar \omega (\sigma^{\dagger} \sigma + A^{\dagger} A)$$
 and  $H_1(t) = -\hbar \Omega(t) (A^{\dagger} \sigma + \sigma^{\dagger} A)$ ,

where

$$\Omega(t) = \begin{cases} 2\pi t/T^2 & \text{for } 0 < t < T/2, \\ 2\pi (T-t)/T^2 & \text{for } T/2 < t < T, \\ 0 & \text{for } t < 0 \text{ and } t > T \end{cases}$$

- (a) Show first that  $(A^{\dagger}\sigma + \sigma^{\dagger}A)^2 = \sigma^{\dagger}\sigma + A^{\dagger}A$ , and then evaluate the commutator  $[H(t_1), H(t_2)]$ . [8 marks]
- (b) Denote by  $\alpha(t)$  the probability amplitude for "atom excited and no photons at time t" and by  $\beta(t)$  the probability amplitude for "atom in the ground state and one photon at time t" and state the coupled Schrödinger equations that they obey. [8 marks]
- (c) Solve these Schrödinger equations to answer this question: If at time t = 0 the atom is excited and there is no photon, what is the probability that the atom is de-excited and one photon present at time t = T? [9 marks]
- 4. Indistinguishable particles. There are two electrons, one has spin up in the z direction and the spatial wave function  $\psi_1(\vec{r}) = \langle \vec{r} | 1 \rangle$ , the other has spin down in the z direction and the spatial wave function  $\psi_2(\vec{r}) = \langle \vec{r} | 2 \rangle$ . Hereby,  $\langle 1 | 1 \rangle = 1 = \langle 2 | 2 \rangle$ , while  $\gamma = \langle 1 | 2 \rangle$  is arbitrary.
  - (a) Determine the spatial two-electron wave functions  $\psi_s(\vec{r}_1, \vec{r}_2)$  and  $\psi_t(\vec{r}_1, \vec{r}_2)$ for the singlet and triplet components, respectively. [9 marks]
  - (b) State the probabilities for finding the electron pair in the singlet and triplet sector. Express your answers in terms of  $\gamma$ . [6 marks]
  - (c) Consider all possible spin states of <u>three</u> electrons. How many spin states are there all together? How many of them belong to total spin  $\frac{3}{2}$ , how many to total spin  $\frac{1}{2}$ ? [6 marks]
  - (d) What is the corresponding situation for the spin states of <u>four</u> electrons? [4 marks]