- **1. Quantum kinematics.** Consider motion along the x axis with, as usual, position operator X and momentum operator P as well as their respective eigenkets $|x\rangle$ and $|p\rangle$.
 - (a) Show that the operator defined by

$$U = \int_{-\infty}^{\infty} \mathrm{d}\lambda \, |p = \lambda p_0 \rangle \sqrt{p_0 x_0} \langle x = \lambda x_0 |$$

is unitary, whereby the parameter $x_0 > 0$ is a reference length and $p_0 > 0$ is a reference momentum. [8 marks]

(b) Show that U turns position kets into momentum kets in accordance with

$$U|x\rangle = |p = p_0 x/x_0\rangle \sqrt{p_0/x_0}$$

[6 marks]

- (c) Conversely, do you get a position bra if U is applied to $\langle p|$? Justify your answer. [3 marks]
- (d) Show that

$$U^{\dagger}f(X,P)U = f(-x_0P/p_0, p_0X/x_0)$$

for any function of X and P.

[8 marks]

2. Temporal evolution. The Hamilton operator of a two-dimensional system is

$$H = \frac{1}{2M}(P_1^2 + P_2^2) + \omega(X_1P_2 - X_2P_1)$$

with constant mass M and frequency ω , and $[X_j, P_k] = i\hbar \delta_{jk}$ for j, k = 1, 2.

- (a) State the Heisenberg equations of motion for X_1 , X_2 , P_1 , and P_2 . [4 marks]
- (b) Show that $P_1^2 + P_2^2$ and $X_1P_2 X_2P_1$ are constants of motion. [6 marks]
- (c) Solve the equations of motion of part (a) for $P_1(t)$ and $P_2(t)$. [7 marks]
- (d) Determine the time transformation function $\langle x_1, x_2, t | p_1, p_2, t_0 \rangle$. [8 marks]

3. Orbital angular momentum. As usual we denote by L_1 , L_2 , and L_3 the cartesian components of the orbital angular momentum vector operator \vec{L} , and the common eigenkets of \vec{L}^2 and L_3 by $|l, m\rangle$. The state of the system is given by a ket of the form

$$|\rangle = |l = 1, m = 1\rangle \alpha + |l = 1, m = -1\rangle \beta,$$

where α and β are complex coefficients with $|\alpha|^2 + |\beta|^2 = 1$.

- (a) Determine the expectation values of L_1 , L_2 , and L_3 as well as their spreads δL_1 , δL_2 , and δL_3 . [10 marks]
- (b) For each pair of the spreads δL_1 , δL_2 , and δL_3 , state the uncertainty relation that the pair obeys. [5 marks]
- (c) Verify that the equal sign applies in the uncertainty relation for δL_1 and δL_2 if $\alpha = \frac{3}{5}$ and $\beta = \frac{4}{5}$. [5 marks]
- (d) What can you say, quite generally, about the coefficients α and β if the equal sign applies in the uncertainty relation for δL_1 and δL_2 ? [5 marks]

4. Perturbed oscillator. A harmonic oscillator (ladder operators A, A^{\dagger} ; circular frequency ω) is perturbed by a cubic interaction of strength $\hbar\Omega$,

$$H = H_0 + H_1$$
 with $H_0 = \hbar \omega A^{\dagger} A$, $H_1 = \hbar \Omega (A^{\dagger} A A^{\dagger} + A A^{\dagger} A)$.

- (a) Determine the 1st-order change of the *n*th energy level. [5 marks]
- (b) Determine the 2nd-order change of the *n*th energy level. [10 marks]
- (c) What is the energy spacing ΔE_n between the *n*th and the (n-1)th level when the perturbation H_1 is taken into account up to 2nd order? [5 marks]
- (d) For which values of n will it surely be necessary to include higher than 2ndorder corrections? [5 marks]