Problem 1 (8+12+10=30 marks)

Consider the one-dimensional motion (position operator X, momentum operator P) that is governed by the Hamilton operator

$$H = vP + \frac{1}{2}\kappa^2 X^2$$

where v and κ are positive constants.

- (a) State and solve the equations of motion obeyed by X(t) and P(t).
- (b) Determine the time transformation function $\langle x, t | p, t_0 \rangle$.
- (c) Given the expectation values $\langle X \rangle = 0$, $\langle P \rangle = 0$, $\langle XP \rangle = \frac{1}{2}i\hbar$, $\langle X^2 \rangle = x_0^2$, and $\langle P^2 \rangle = p_0^2$ at time t_0 , find the spreads $\delta X(t)$ and $\delta P(t)$ at time t.

Problem 2 (10 marks)

Harmonic oscillator ladder operators A, A^{\dagger} ; coherent state kets $|a\rangle$ and bras $\langle a^*|$. Show that $e^{zA^{\dagger}}|a\rangle = |a + z\rangle$ for all complex numbers z. Which bra results from $\langle a^*|e^{z^*A}$?

Problem 3 (10 marks)

A three-dimensional system (mass M, position vector operator \vec{R} , momentum vector operator \vec{P}) is in an eigenstate of the Hamilton operator $H = \vec{P}^2/(2M) + V(\vec{R})$. Show that the mean torque, that is: the expectation value of the torque vector operator $\vec{R} \times \vec{F}$, is zero, where $\vec{F} = -\frac{\partial}{\partial \vec{R}}V(\vec{R})$ is the force vector operator.

Problem 4 (5+20=25 marks)

Orbital angular momentum vector operator \vec{L} with cartesian components L_1 , L_2 , and L_3 ; as usual, $|l, m\rangle$ is a joint eigenket of \vec{L}^2 and L_3 .

- (a) For l = 1 and a given value for the angle parameter γ , what are the eigenvalues of $L_1 \cos \gamma + L_2 \sin \gamma$?
- (b) Find the respective eigenkets of $L_1 \cos \gamma + L_2 \sin \gamma$ as superpositions of the eigenkets of L_3 .

Problem 5 (25 marks)

One simplifying assumption in the derivation of the Bohr energies of hydrogen-like atoms is that we regard the atomic nucleus as a point charge. When we want to describe it rather as a homogeneously charged ball, we replace the potential energy

$$V_{\rm point}(r) = -\frac{Ze^2}{r} \qquad {\rm by} \qquad V_{\rm sphere}(r) = \begin{cases} -\frac{Ze^2}{2b^3}(3b^2 - r^2) \mbox{ for } r < b \ , \\ -\frac{Ze^2}{r} \mbox{ for } r > b \ , \end{cases}$$

where b > 0 is the radius of the ball-shaped nucleus. Bear in mind that b is a tiny fraction of the Bohr radius a_0 (roughly $b/a_0 \cong 10^{-4}$), and determine the resulting 1st-order change in the atomic ground-state energy. — Hint: For hydrogenic wave functions see equations (5.2.27), (6.7.6), and (6.7.16) in the lecture notes.