1. Mean velocity (10 marks)

Three-dimensional motion: position vector operator \vec{R} , momentum vector operator \vec{P} . The system is in an eigenstate of the Hamilton operator $H(\vec{P}, \vec{R})$. Show that the mean velocity, that is: the expectation value of the velocity vector operator $\vec{V} = \frac{d}{dt}\vec{R}$, is zero.

2. Time-dependent spreads (25=12+8+5 marks)

At time t = 0, the initial position wave function of a one-dimensional harmonic oscillator (position operator X, momentum operator P, mass M, circular frequency ω) is given by

$$\psi(x) = \sqrt{\kappa} e^{-\kappa |x|}$$

with $\kappa > 0$.

- (a) Determine $\delta X(t)$ and $\delta P(t)$, the time-dependent spreads in position and momentum, respectively.
- (b) Verify that Heisenberg's position-momentum uncertainty relation is obeyed at all times.
- (c) For which value of κ is the uncertainty product $\delta X(t) \, \delta P(t)$ independent of time t?

3. Orbital angular momentum (20=5+10+5 marks)

The Hamilton operator of a spinning top is

$$H = \frac{1}{2I_1}L_1^2 + \frac{1}{2I_2}L_2^2 + \frac{1}{2I_3}L_3^2$$

where L_1 , L_2 , L_3 are the cartesian components of the angular momentum vector operator \vec{L} , and I_1 , I_2 , I_3 are the moments of inertia for the three major axes of rotation.

- (a) State the equation of motion obeyed by $L_1(t)$.
- (b) If the top is in a common eigenstate of \vec{L}^2 and L_3 with eigenvalues $2\hbar^2$ and \hbar , respectively, what is the expectation value $\langle H \rangle$ of H and what is its spread δH ?
- (c) If $I_2 = I_3$, what are the eigenvalues of H?

4. Hydrogen-like atoms (20=8+8+4 marks)

You have a tritium atom (³H, nuclear charge Z = 1) in its ground state [principal quantum number n = 1, angular momentum quantum numbers (l, m) = (0, 0)]. Suddenly the triton nucleus undergoes a β decay whereby the emitted electron (and also the neutrino) escape so rapidly that we can regard the net effect as an instantaneous replacement of the triton by a ³He nucleus (nuclear charge Z = 2). For the bound electron, this amounts to a sudden doubling of the nuclear charge.

- (a) What is the probability that, after the decay, the resulting ³He⁺ ion is found in its electronic ground state as well?
- (b) What is the probability that you find the ${}^{3}\text{He}^{+}$ ion in its excited state with n = 2 and l = 0?
- (c) What is the probability that you find the ${}^{3}\text{He}^{+}$ ion in one of its exited states with n = 2 and l = 1?

Hint: For hydrogenic wave functions see equations (5.2.27), (6.7.6), and (6.7.16) in the lecture notes.

5. Perturbation Theory (25=15+10 marks)

A harmonic oscillator (ladder operators A, A^{\dagger} ; Hamilton operator $H_0 = \hbar \omega A^{\dagger} A$) is perturbed by $H_1 = \hbar \Omega [A^{\dagger} (AA^{\dagger})^{-1/2} + (AA^{\dagger})^{-1/2} A]$. We denote the *n*th eigenvalue of the total Hamilton operator $H = H_0 + H_1$ by $E_n = \hbar \omega \epsilon_n (\Omega/\omega)$ where, of course, the unperturbed energies $E_n^{(0)} = n\hbar\omega$ are recovered by $\epsilon_n(0) = n$ for n = 0, 1, 2, ...

- (a) For n = 0, 1, 2, ..., determine $\epsilon_n(\Omega/\omega)$ up to 2nd order in Ω/ω by Rayleigh-Schrödinger perturbation theory.
- (b) Find the 2nd-order approximation to $\epsilon_0(\Omega/\omega)$ in Brillouin–Wigner perturbation theory (only n = 0 here).