Problem 1 (15=6+9 marks)

As usual, $\rho(\vec{r},t)$ and $\vec{j}(\vec{r},t)$ denote the electric charge density and the electric current density, respectively, and $\Phi(\vec{r},t)$ and $\vec{A}(\vec{r},t)$ are the scalar potential and the vector potential.

- (a) How does $\rho\Phi-\frac{1}{c}\vec{j}\cdot\vec{A}$ transform under Lorentz transformations like a 4-scalar field, like the time-like component of a 4-vector field, or like something else?
- (b) Show that a gauge transformation amounts to adding a total time derivative to $\int ({
 m d} \vec{r}) \left(\rho \Phi \frac{1}{c} \vec{j} \cdot \vec{A} \right)$.

Problem 2 (45=20+7+8+10 marks)

A monochromatic plane light wave of (angular) frequency ω is incident on a plane mirror under normal angle ϑ . The mirror moves with constant normal velocity v. The reflected wave has frequency ω' and normal angle ϑ' .

For v=0, we have $\omega'=\omega$ and $\vartheta'=\vartheta$.

- (a) With the convention that the mirror moves *toward* the incoming wave for v>0, as indicated in the figure, express ω' and $\cos\vartheta'$ in terms of v, ω , and $\cos\vartheta$.
- (b) What do you get for ω' and ϑ' in the limit $v \to c$?
- (c) Why do you expect $\omega' = \omega$ and $\vartheta' = \pi \vartheta$ when $v = -c\cos\vartheta$? Verify that your expressions confirm this expectation.
- (d) For which (negative) value of v is $\vartheta' = \frac{1}{2}\pi$?

Problem 3 (20=5+5+5+5 marks)

A time-dependent electric point dipole $\vec{d}(t)$, located at $\vec{r}=0$, has the charge density $\rho(\vec{r},t)=-\vec{d}(t)\cdot\vec{\nabla}\delta(\vec{r}).$

- (a) Find the corresponding current density $\vec{j}(\vec{r},t)$.
- (b) Verify that your choice for $\vec{j}(\vec{r},t)$ is such that the magnetic moment $\vec{\mu}(t) = \frac{1}{2c} \int (\mathrm{d}\vec{r})\,\vec{r} \times \vec{j}(\vec{r},t)$ vanishes.
- (c) Verify that $\int ({
 m d} \vec{r}) \, \vec{j}(\vec{r},t)$ has the correct value.
- (d) Find the vector potential $\vec{A}(\vec{r},t)$ in the Lorentz gauge.

Problem 4 (20 marks)

An electric point dipole of constant strength $|\vec{d}(t)|=d$ is located at $\vec{r}=0$ and oriented in the x,y plane, and rotates around the z axis with constant angular velocity: $\vec{e}_z \cdot \vec{d}(t) = 0$ and $\frac{\mathrm{d}}{\mathrm{d}t} \vec{d}(t) = \vec{\omega} \times \vec{d}(t)$ with $\vec{\omega} = \omega \vec{e}_z$. Find $\frac{\mathrm{d}P}{\mathrm{d}\Omega}$, the angular distribution of the radiated power, and the total radiated power $P = \int \mathrm{d}\Omega \, \frac{\mathrm{d}P}{\mathrm{d}\Omega}$, both averaged over one period of the rotation.