1. Force between co-moving charges (25=8+9+8 marks)

Electron 1 is moving along the z-axis with constant velocity $\vec{v} = v \vec{e}_z$, so that its trajectory is $\vec{r}_1(t) = \vec{v}t$. Electron 2 is co-moving at a fixed distance \vec{a} from electron 1, so that its trajectory is given by $\vec{r}_2(t) = \vec{r}_1(t) + \vec{a}$.

- (a) Upon denoting by $\vec{E}(\vec{r},t)$ the electric field associated with electron 1, show by a very simple argument — that the corresponding magnetic field $\vec{B}(\vec{r},t)$ is given by $\vec{B} = \frac{\vec{v}}{a} \times \vec{E}$.
- (b) Determine the force \vec{F} on electron 2, and express your answer in terms of the parallel and perpendicular components of $\vec{a} = \vec{a}_{\parallel} + \vec{a}_{\perp}$ with $\vec{a}_{\parallel} \parallel \vec{v}$ and $\vec{a}_{\perp} \perp \vec{v}$.
- (c) For both $\vec{a} = \vec{a}_{\perp}$ and $\vec{a} = \vec{a}_{\parallel}$ compare \vec{F} with the force in the common rest frame of the two electrons.

2. Čerenkov radiation (10 marks)

A charged particle moves with speed v along the axis of a dielectric cylinder. The speed is so large that Čerenkov radiation of wavelength λ is emitted. What fraction of this radiation passes into the surrounding vacuum through the cylindrical surface of radius $R \gg \lambda$?

3. Diffraction (15 marks)

All of the x, y plane is covered by a thin conducting sheet except for an annulus (a ring-shaped opening) whose borders are two concentric circles with radii a and b, 0 < a < b. A plane wave with wavelength λ is normally incident from the z < 0 side. The wavelength is short in the sense of $\lambda \ll a$ and $\lambda \ll b - a$. Employ the usual approximations and find the differential diffraction cross section.

4. Free-electron laser (50=10+25+10+5 marks)

In a free-electron laser (FEL), electrons (mass m, charge e) are injected at ultrahigh speed into a helical magnetic field, which we will approximate by

$$\vec{B}(\vec{r}) = \begin{pmatrix} B\cos(k_0 z) \\ B\sin(k_0 z) \\ 0 \end{pmatrix} \quad \text{for} \quad 0 < z < L = \frac{2\pi}{k_0} N$$

and $\vec{B} = 0$ for z < 0 and z > L. The winding number N is a large integer. We choose $\vec{r}(t) = \begin{pmatrix} v_{\perp}t \\ 0 \\ v_{\parallel}t \end{pmatrix}$ for t < 0 as the initial condition for an isolated electron,

and take for granted that $v_{\perp} \ll v_{\parallel} \lesssim c$, as would be typical for FEL operation. Under these circumstances, FEL radiation is predominantly in the forward direction $\vec{n} = \vec{e}_z$.

(a) State the equations of motion and show that they are solved by

$$\vec{v}(t) = \begin{pmatrix} v_{\perp} \cos(k_0 z(t)) \\ v_{\perp} \sin(k_0 z(t)) \\ v_{\parallel} \end{pmatrix} \quad \text{for} \quad 0 < t < T = L/v_{\parallel}$$

in conjunction with $z(t) = v_{\parallel}t$, provided that the various constants e, m, B, k_0 , v_{\perp} , v_{\parallel} , $v = \sqrt{v_{\parallel}^2 + v_{\perp}^2}$, $\gamma = 1/\sqrt{1 - (v/c)^2}$ obey a certain relation.

(b) Calculate the angular-spectral distribution of the radiation in the forward direction by using

$$\frac{\mathrm{d}E(\omega)}{\mathrm{d}\Omega} = \frac{\omega^2}{4\pi^2 c^3} \left| \vec{n} \times \int_0^T \mathrm{d}t \, \mathrm{e}^{\mathrm{i}\omega t} \, \vec{j}(\vec{k},t) \right|^2 \quad \text{for} \quad \vec{k} = \frac{\omega}{c} \vec{n} = \frac{\omega}{c} \vec{e}_z \,,$$

where the time integral covers the period of acceleration.

- (c) Determine the frequency ω_{\max} for which $\frac{dE(\omega)}{d\Omega}$ is maximal, and find this maximal value. How do these quantities depend on the winding number N?
- (d) Find the smallest value of $\Delta \omega$ such that $\frac{dE(\omega)}{d\Omega} = 0$ for $\omega = \omega_{\max} \pm \Delta \omega$. How large is the fractional width $\frac{\Delta \omega}{\omega_{\max}}$ of the FEL frequency peak?