All points on the circle at z = 0 are the same distance v R? + 22 away
from 7 = z€,, where we want to find the retarded potentials. The retardation
condition (6.3.3) is then
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and since R(tyt) and V(tet) are both perpendicular to 7, we have — for this
geometry — the retarded potentials
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The electric field is
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that is: no electric field inside the sphere, and outside it is the Coulomb field
of the net charge.
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The magnetic dipole moment is
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This gives first the vector potential
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and then the magnetic field
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that is: a constant magnetic field inside the sphere, and outside it is the field
of the magnetic dipole f.

In (see Exercise 33)
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we insert what applies for motion on a circle with constant speed, that is:
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and so get
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which is the familiar result.



