As we know, the electric field is
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and the magnetic field is

. 27 377 — 1
B(7) = n(R—r) =5 +n(r — R) R
r
where
eR?
o= 3cw

is the magnetic dipole moment.

(a) We have the energy density
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for which the integration over the solid angle gives
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Accordingly, the total energy is
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(b) The angular momentum density is
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(c) The energy current density is
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For r = R+ 0 (“just outside”), this gives
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where ¥ = w x 7 = Rw x 7*/r is the velocity of the charge on the surface.



We know, from some exercises, that acceleration by a constant force F =
=
e|F| gives a rapidity 0(t) such that sinh(6(t)) = F't/(mc) and for the product

of 43 = cosh(6(t))* and dzgf) = c% tanh(6(t)) we have
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so that the rate of radiative energy loss is constant,
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where V' = L@ | is the voltage drop in each half of the tandem accelerator.
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The distance traveled in time T is ¢ / dt tanh(6(t)). For
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this gives
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for the duration T of the whole acceleration period. It follows that the total

energy radiated is
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Upon recalling (12.2.6) and remembering that cosf ~ 1 for the relevant
angles, the relation of (12.3.8) gives the stated differential cross section. Then,
since scattering is almost exclusively in the forward direction, we have k?d§) =
(dk.) and so get

— ]_ 2 7 = T o/
a:/(dm(%) [ @y e [ et

aperture aperture
= [ [ @i - = [ @),
aperture aperture aperture

so that o is the area of the aperture.



