1. Conservative force (10 marks)

Is the centrifugal force $\vec{F}(\vec{r}) = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$ conservative? If yes, state its potential energy.

2. One-dimensional periodic motion (20=6+9+5 marks)

A point mass m moves along the x axis under the influence of the force

$$F(x) = -a(x^2 - x_0^2),$$

where a and x_0 are positive constants.

- (a) The force vanishes for $x = \pm x_0$. Which of them is the location of a stable equilibrium?
- (b) What is the period of small-amplitude oscillations about the stable-equilibrium position?
- (c) Without any calculation: Is the period longer or shorter for oscillations with amplitudes that are not small? Explain.

3. Lagrange function, Hamilton function (20=10+10 marks)

The dynamics of point particle (mass m, position $\vec{r}(t)$, velocity $\vec{v}(t)$) is described by the Lagrange function

$$L = \frac{m}{2}\vec{v}^2 - V(\vec{r}) + \vec{v}\cdot\vec{\nabla}u(\vec{r})\,,$$

where $V(\vec{r})$ is the potential energy and $u(\vec{r})$ is some given function of position \vec{r} .

- (a) Derive the Newton's equation of motion for the particle and so show that the same physical system is described, irrespective of which $u(\vec{r})$ is chosen.
- (b) Find the corresponding Hamilton function. Does it depend on the choice of $u(\vec{r})$?

4. Moments of inertia (20=15+5 marks)

A rigid body of mass ${\cal M}$ has the shape of an oblate ellipsoid whose surface is given by

 $x^2 + y^2 + 4z^2 = 4R^2$ with R > 0.

The body has a homogeneous mass density ρ_0 , except for a ball-shaped core of radius R that has density $2\rho_0$.

- (a) Find the inertia dyadic in terms of M and R.
- (b) The body rotates with angular velocity $\vec{\omega} = \omega(\vec{e}_x \sin \theta + \vec{e}_z \cos \theta)$ about an axis through its center. What is the angular momentum?

5. Upside-down pendulum (30=15+15 marks)

A thin rigid homogeneous rod of length ℓ and mass m is standing upright, but is slightly off the exact vertical position and tends to fall over because the gravitational acceleration g is pulling it down. The bottom end of the rod is periodically moved vertically up and down along the z axis, such that its acceleration switches between λg and $-\lambda g$ at regular instants separated by the half-period T/2, whereby λ is a positive constant parameter.

- (a) With the top of the rod at distance $s(t) = \sqrt{x(t)^2 + y(t)^2}$ from the z axis, state the equations of motion for x(t) and y(t) when $s \ll \ell$.
- (b) Which condition must be met by λ and T, so that the rod stays upright and does not fall over?