The overall effect of the two successive reflections is the mapping
r—r—2ee-r— (7’—26161'7‘)—26262'(7‘—26161‘7’),

thatis: » > 7r—2e1e;,-r—2eye3- 17 +4eye5- € e -r. In the case of e, = ey,
the second reflection undoes the first and the overall mapping is the identity.

(a) We need to verify that e; X e, is mapped onto itself, which is immediate.

(b) We take a vector that is perpendicular to the rotation axis, such as e;. This
is mapped onto —e; + 2e5 €5 - eg, so that

cos¢g = er-(—e+2ey ere1) = —1+2(e1-€)* = —142(cos a)® = cos(2a).

This gives ¢ = 2a or ¢ = —2au.

We use (2.2.140) for v = 0, w = wp, o = 0 and F(t') = my,

x(t) = v

. " t : t—+ i t
sin(wot) + g/ d¢ M = Uosm(wo ) + % [1 — cos(wot)] ;
Wo 0 Wo Wo wo

where we need to find vy such that #(7") = 0. This requirement reads

vo cos(weT’) + g sin(weT) =0 or wvg= g tan(weT) ,
Wo wo

so that we have

(t) g g sin(wot)sin(weT) + cos(wot) cos(woT) g g cos(wo(T — 1))
€T = —_ — — _—— = =
wi o wh cos(woT') wg wi cos(weT)

g sin(wo(T — t))
(1) = “wy cos(woT)

at intermediate times.




For E > 0 the motion is unbounded; for 0 > E > —FE, we have motion
between two turning points; there is no energy range with motion bounded
by one turning point; £ < —E), is not possible.

For £ = V(4a) = —Ey/[cosh(ka)]?, (3.1.19) gives

e 2/“ o {2::0 (Coshikzw)Q - coshtka)z)} -

cosh(ka) cosh(kx)

Y L
Eo J_a  y/cosh(ka)? — cosh(kz)?

_ [2mcosh(ka) adx k cosh(kz)
VE, & —a  y/sinh(ka)? — sinh(kz)?’

=T

where the integral can be evaluated with the substitution sinh(kz) =
sinh(ka) sin . With cosh(ka) = \/—Ey/E, the final answer is

2
om for —Ey < E<O0.

T<E>:% —E

(a)

(b)

The curl of F is
Vx F(r)=Vfi(r)xa+Vfr)x(a-rr) —l—fg(r)(V(i-ar) X T
Y (LY 1O -

+ e r Txr = (10D - 50 )rx o
=0

For a conservative force, we need a vanishing curl, which requires fa(r) =
1 !/
;fl(r)'
1
Now, for fo(r) = ;f{(r), we have

F(r)= fﬂr)a%—%f{(r)a-rr = fi(r)V(a-r)+a-rV fi(r) = V(fl(r)a-r) ,

so that V(r) = — fi(r)a -  is a potential energy for this conservative force.




