According to Section 4.5 of the lecture notes, we have
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These are solved by

I - 1 ,
R(t) = Ry + M(t —ty) + 59(75 to)”,
Ptot(t):P()‘l‘Mg(t—t()),
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Eioi(t) = Eg+ Py - g(t —to) + §Mg2(t —t0)?,
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Lii(t) = Lo+ MRy x g(t —ty) + 5P0 X g(t —to)?.

Scattering occurs only when b < R. For b < R, then, we denote the angle
of incidence by «v. It is related to the impact parameter by b = Rsina and to the
scattering angle by § = m — 2. Therefore,

cos) = —cos(2a) = 2(sina)® — 1 =2(b/R)* — 1,

which implies
J R
dQ ~ 2|dcosd| ZR

for the differential cross section and ¢ = wR? for the total cross section.
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According to Section 7.3 of the lecture notes, we have

T = R(¢_Sln¢)7
y = R(1 —cos¢)

for the brachistochrone, here with 0 < ¢ < 27 and R = a/(27). With

ds = +/(dz)? + (dy)? = Rd¢ /2 — 2cos ¢ = 2Rd¢ sin%

and

v =1/2g9y =2 gRsin?

we get
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for the duration and
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for the distance covered. Their ratio is the average speed,
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(a) We have the Lagrange function

k 2
L(t,z, %) = %9’62 - §<V:E2+a2 —a> ;

it has no parametric ¢ dependence. The energy

k 2
E:%x'2+§<\/x2+a2—a>

is conserved. The equation of motion is

d T kax
—mi = —k(\/x2 + q? —a)— =k + ——.
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(b)

Since & = ad cosh ¥ and /22 + a% = acosh 9, we have the Lagrange func-

tion
2

. 2 .
L(t,9,9) = %(19 cosh ) — ]‘%(coshﬁ 12,

This gives the equation of motion

d . .
me [U(cosh¥)?] = mv)® coshd sinh ¢ — k(coshd) — 1) sinh o)

or

. k
¥(cosh ¥))? 4+ 9% cosh ¥ sinh ) = —E(Coshﬁ — 1) sinh .
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For |z| < a we have Va2 +a? —a = % + -+ and get the approximate
a

Lagrange function
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and the equation of motion
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Since x = av here, we also have L(¥, 1) = T8 g2 B0 and = —




