
1 The force

F (x) = −V ′(x) = E0
2a2x (x2 − a2)
(x2 + a2)3

vanishes at x = 0 and x = ±a. At these positions, the potential energy equals

V (x = 0) = 0 and V (x = ±a) = 1

4
E0, and the second derivative of V (x) is

V ′′(x = 0) = −F ′(x = 0) =
2E0

a2
and V ′′(x = ±a) = −F ′(x = ±a) = − E0

2a2
.

Therefore, we have

V (x) ∼=


E0x

2

a2
for x � a ,

E0

(
a2 − (x∓ a)2

)
4a2

for x∓ a � a .

(a) We have the minimum of the potential energy at x = 0 and maxima at
x = ±a. It follows (i) that the energy cannot be negative; (ii) that there is

motion with no turning points for E >
1

4
E0; (iii) that, for 0 < E <

1

4
E0,

there is motion with two turning points if the initial position is between
x = −a and x = a, and motion with one turning point otherwise.

(b) We have small-amplitude oscillations near x = 0, where V (x) ∼= 1

2
mω2

0x
2

with ω0 =
√
2E0/(ma2), so that

T0 =
2π

ω0

=
2πa√
2E0/m

is their period.

(c) When E0 = − E0 < 0, the potential energy has its maximum at x = 0 and
two symmetric minima at x = ±a. Then there is (i) motion with no turning

point for E > 0, and (ii) motion with two turning points for
1

4
E0 < E < 0.

We have small-amplitude oscillations near x = a and x = −a with the same

period T1 = 2π/ω1 with ω1 given by V (x) ∼= E0

4a2
+

1

2
mω2

1(x∓ a)2, so that

ω2
1 = −E0/(2ma

2) and

T1 =
4πa√

2 E0 /m

is the corresponding period.
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(a) At the perihelion we have s = (1 − ε)a, ṡ = 0, and ϕ̇ = κ/s2 as always, so
that

E =
m

2

(
ṡ2 + (sϕ̇)2

)
− Gm�m

s
=

mκ2

2(1− ε)2a2
− Gm�m

(1− ε)a
.

(b) The virial theorem of Exercises 31–33 applies here for n = −1, so that

Ekin = −E and Epot = 2E .

(c) With dt = dϕ s2/κ, we have

Epot =
1

T

∫ T

0

dt
−Gm�m

s
= −Gm�m

κT

∫ 2π

0

dϕ s(ϕ)

= −Gm�m
κT

∫ 2π

0

dϕ
(1− ε2)a
1 + ε cosϕ

= −Gm�m
κT

2πa
√
1− ε2

= −Gm�m
a

.

(d) We equate 2E from (a) with Epot from (c), and solve for Gm�. This gives

Gm� =
κ2

(1− ε2)a
=

(
2π

T

)2

a3
(

κT

2π
√
1− ε2a2

)2

=

(
2π

T

)2

a3 ,

which is Kepler’s Third Law.

3

(a) When v � c, we have
√
c2 − v 2 = c− 1

2c
v 2, so that

L = mc2 −mc
(
c− 1

2c
v 2

)
− V (r) =

1

2
mv 2 − V (r) ,

as it should be.



(b) The momentum is related to the velocity by

p = ∇vL =
mcv√
c2 − v 2

.

We square this to establish first

c2 − v 2 =
(mc2)2

(mc)2 + p2

and then
v =

cp√
(mc)2 + p2

.

It follows that the Hamilton function is

H =
(
p · v − L

)∣∣∣∣∣
v = (as above)

= c
√

(mc)2 + p2 −mc2 + V (r) .

4 The top mass has these coordinates and velocity components:

(x1, y1) = R(φ+ sinφ, 1− cosφ)

(ẋ1, ẏ1) = Rφ̇(1 + cosφ, sinφ) ;

and for the bottom mass we have

(x2, y2) = (x1, y1) + 3R(sin θ,− cos θ)

(ẋ2, ẏ2) = (ẋ1, ẏ1) + 3Rθ̇(cos θ, sin θ) .

(a) In the Lagrange function L = Ekin − Epot, we have the kinetic energy

Ekin =
m

2
(ẋ21 + ẏ21 + ẋ22 + ẏ22)

= 2mR2φ̇2(1 + cosφ) + 3mR2φ̇θ̇
(
cos θ + cos(φ− θ)

)
+

9

2
mR2θ̇2

and the potential energy

Epot = mgy1 +mg(y2 + 3R) = mgR(5− 2 cosφ− 3 cos θ) ,

where we recognize that y1 = 0, y2 = −3R at equilibrium and choose to set
Epot = 0 there.



(b) Near this equilibrium we have

Ekin = 4mR2φ̇2 + 6mR2φ̇θ̇ +
9

2
mR2θ̇2 ,

Epot = mgR
(
φ2 +

3

2
θ2
)
,

which give

L =
1

2

(
φ̇ θ̇
)
M

(
φ̇

θ̇

)
− 1

2

(
φ θ
)
K

(
φ
θ

)
with

M = mR2

(
8 6
6 9

)
and K = mgR

(
2 0
0 3

)
.

(c) After putting the common factor mR aside, the frequencies of the normal
modes are determined by

det

{(
8Rω2 − 2g 6Rω2

6Rω2 9Rω2 − 3g

)}
= 36(Rω2)2 − 42gRω2 + 6g2 = 0

or
(Rω2 − g)(6Rω2 − g) = 0 ,

so that the normal frequencies are ω1 =
√
g/R and ω2 =

√
g/(6R). The

corresponding normal coordinates follow from(
8Rω2 − 2g 6Rω2

6Rω2 9Rω2 − 3g

)
Rω2 = g

(
φ1

θ1

)
= 0 or

(
1 1
1 1

)(
φ1

θ1

)
= 0

and(
8Rω2 − 2g 6Rω2

6Rω2 9Rω2 − 3g

)
Rω2 = g/6

(
φ2

θ2

)
= 0 or

(
−4 6
6 −9

)(
φ2

θ2

)
= 0 .

Accordingly, we can choose

(
φ1

θ1

)
=

(
1
−1

)
and

(
φ2

θ2

)
=

(
3
2

)
.

A small-amplitude oscillation in the fast normal mode (ω = ω1) is of the
form (

x1
x2

)
=

(
2Rφ

2Rφ+ 3Rθ

)∣∣∣∣∣
φ = −θ = ε1

=

(
2Rε1
−Rε1

)
and (y1, y2) = (0,−3R), where ε1(t) = a1 cos(ω1t − ϕ1) with some small
amplitude a1 and some phase ϕ1. The two masses are displaced to opposite
sides, whereby the top mass is oscillating with twice the amplitude of the
bottom mass.



Likewise, a small-amplitude oscillation in the slow normal mode (ω = ω2) is
of the form (

x1
x2

)
=

(
2Rφ

2Rφ+ 3Rθ

)∣∣∣∣∣
2φ = 3θ = ε2

=

(
Rε2
2Rε2

)

and (y1, y2) = (0,−3R), where with ε2(t) = a2 cos(ω2t − ϕ2) with some
small amplitude a2 and some phase ϕ2. The two masses are displaced to the
same side, whereby the top mass is oscillating with half the amplitude of the
bottom mass.


