Problem 1 (25=7+18 marks)

A point mass m is thrown upwards from $\mathbf{r}(t=0) = 0$ with initial velocity $\mathbf{v}(t=0) = v_0 \mathbf{e}_z$, $v_0 > 0$, and then moves under the influence of its weight $m\mathbf{g} = -mg\mathbf{e}_z$ and the Newtonian frictional force $-m\gamma \mathbf{v}$. The point mass is highest above ground at time t_1 , and it is back at the initial height z = 0 at time t_2 .

- (a) Explain by qualitative arguments, why $t_2 > 2t_1$, that is: it takes longer to fall down than to fly up.
- (b) Find expressions that relate t_1 and t_2 to $\gamma v_0/g$ and then use them to demonstrate that $t_2 > 2t_1$ is indeed the case. Hint: $\sinh(\vartheta) > \vartheta$ for $\vartheta > 0$.

Problem 2 (45=5+8+12+4+16 marks)

A point mass m is moving along the x axis under the influence of the force associated with the potential energy

$$V(x) = F\left(\sqrt{|x| + a} - \sqrt{a}\right)^2$$

with constants F > 0 and a > 0.

- (a) What are the metrical dimensions of F and a?
- (b) Which combination of m, F, and a has the metrical dimension of energy? Which combination has the metrical dimension of time?
- (c) Which simple expressions approximate V(x) for $|x| \ll a$ and $|x| \gg a$?
- (d) What is the period of small-amplitude oscillations?
- (e) What is the energy-dependent period T(E) for motion between two turning points? Hint: The substitution $x = (y^2 + 2y)a$ could be helpful.

Problem 3 (30=15+15 marks)

Consider the following two force fields:

(i)
$$\mathbf{F} \stackrel{\frown}{=} \lambda \begin{pmatrix} y^2 + yz \\ 2xy - z^2 + xz \\ 2yz + xy \end{pmatrix}$$
 with λ = constant;
(ii) $\mathbf{F} = \mathbf{a} \times (\mathbf{r} \times \mathbf{a})$ with \mathbf{a} = constant.

- (a) Is force (i) conservative? If yes, find a potential energy for it.
- (b) Is force (ii) conservative? If yes, find a potential energy for it.