(a) On the way up (0 <t < T), the speed v(t) changes in accordance with
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It follows that the height reached is
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(b) On the way down (¢ > T'), the speed v(t) changes in accordance with
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It follows that the height above ground at time ¢ is
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Therefore, vy is given by
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It follows that

V2 + vg v V0Uso
3 = 5 OF U= —.
V% Vo — U1 V05 + U

(a)

(b)

(c)

At equilibrium, the masses are distance a apart and each at distance a from the
adjacent wall, and all springs are relaxed; we choose x;1 and x5 as the displacements
from equilibrium to the right. Then
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Since X = (1) and X2 — _11
they specify the normal modes, and we find the characteristic frequencies w; and
wy from

are common eigencolumns of M and K,
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0= (WiM — K)X® = (mw3 — ky — 2ks) X so that wy = \/m
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Since w1 < woy, the first mode is the slow one, and the second mode is the fast
one.
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The first normal mode is just center-of-mass motion, where the distance between
the masses is a at all times and the inner spring is always relaxed:
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The second normal mode is a breathing mode, where the center-of-mass is at rest

and the two masses move with opposite velocities:
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(d) The Hamilton function is
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(a) The center-of-mass of the two-body system is at
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and the positions of bodies 1 and 2 relative to the center-of-mass are
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Ri-R=———F(R1—R d Ry—R=——"-(R2— Ry).
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Upon applying Steiner’ theorem twice, we get
I =1 +M[(Ri—R)’1— (R — R)(Ri — R)]
+ 1+ M[(R; — R)*1— (Ry — R) (Ro — R)]
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=h+lh+—F+ (R —R2)"1-(R; — Ry)(R; — Ry)|.
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(b) We denote the position vectors of the four point masses by 7, 12, r3, and 4.

Their cartesian coordinates could be
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for example, and we have r; - 7, = a“d;, — Za as well as er rj = a“1 for their
j=1
dot products and the sum of their dyadic squares. Accordingly, the inertia dyadic
is
4
l4 masses = Zm(TJQ]- -7y 'I"j) = 2ma’l.
j=1
(c) We recognize the situation of part (a) for the three-mass system as body 1

(My=3m, R, = —§r4, and |} =13 masses) and the fourth mass as body 2
(M3 =m, Ry =1y, and Iy = 0), and the two-body system is the four-mass sys-
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tem. With a2 = gri, we then have
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l4 masses = gmrzl = I3 masses + 0+ E |:<3’I"4) 1- §T4 37“4:|
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(a) In the laboratory frame we have m# = —=VV = —mwi[r —3nn - r|.
(b) We introduce coordinates in the rotating frame by writing
x
r=azn+ye,xn-+ze, = |y
z
With
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we then have
& —Qy & — 20y — Q%x —2x
r= | g4+Qr |, = | §+291 - Q% and r—3nn-r= Yy
Together they gives us the equation of motion
i —2Qy — (202 + 0%z 0
§+208+ (W3 -y | =1|0
Z+ w%z 0
(c) The z motion is harmonic all by itself and thus stable, irrespective of the value of (2.
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where w must be real to ensure that the point mass stays near » = (0. The ansatz

works if
02 + 2w8 +w? 210w ay 0
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which requires that the determinant of the 2x2 matrix vanishes. The possible w?
values are, therefore, solutions of
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For the coupled xy motion, we make the exponential ansatz (y) = e“’”( >



(02 +2w2 + W) (P — Wi +w?) —40%% =0
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or <w2 + 5(»% — Q2> — ng(9w3 —80%) =0,
which are two versions of the same second-degree polynomial in w?. This polyno-
mial has two positive roots if (i) its value is positive for w? = 0; (ii) its minimum
is located at a positive w? value; and (iii) the minimum is negative. Accordingly,
we need

(i) (2% +205)(Q% —wj) >0,
1
(i) Q2 — §w(2) >0,

1
(iii) ng(gwg —80%) > 0.
It follows that the point mass stays near r = 0 if

9
w§<§22<§w3.




