Problem 1 (**25**=5+15+5 marks)

For a certain rubber band of length L that consists of n moles of rubber, the differential of the internal energy U is

$$\mathrm{d}U = T\,\mathrm{d}S + \tau\,\mathrm{d}L + \mu\,\mathrm{d}n\,,$$

where T, S, τ, μ are the temperature, entropy, tension, and chemical potential, respectively.

(a) Show that

$$U(S,L,n) = T(S,L,n)S + \tau(S,L,n)L + \mu(S,L,n)n.$$

- (b) The equation of state $TS = 3\tau L$ holds for this rubber band. It is also known that $\tau L^{1/2}$ does not change if both S and n are kept constant (no heat transfer, no particle exchange). Find U(S, L, n) up to a multiplicative constant.
- (c) Confirm that the equation in part (a) holds for this U(S, L, n).

Problem 2 (25=15+10 marks)

The so-called Berthelot gas has the equation of state

$$p = \frac{RT}{v-b} - \frac{a}{v^2 RT} \quad \text{with} \quad a, b > 0 \,,$$

where, as usual, p, T, v, and R are pressure, temperature, molar volume, and gas constant, respectively. Above a critical temperature $T_{\rm cr}$, this gives a pressure that decreases monotonically as the molar volume increases. For temperatures T below $T_{\rm cr}$, the Maxwell construction identifies a range $v^{(1)} \leq v \leq v^{(2)}$, in which the pressure does not depend on v. For given material constants a and b, this co-existence pressure $\overline{p}(T)$ is a function of temperature T. At the critical temperature, we have the critical pressure, $\overline{p}(T_{\rm cr}) = p_{\rm cr}$, and the corresponding critical molar volume $v_{\rm cr}$.

- (a) Find $T_{\rm cr}$, $p_{\rm cr}$, and $v_{\rm cr}$ in terms of a and b. What is the value of $p_{\rm cr}v_{\rm cr}/T_{\rm cr}$?
- (b) For temperatures T just below the critical temperature, $T_{\rm cr} T \ll T_{\rm cr}$, the co-existence pressure is well approximated by

$$\overline{p}(T) = p_{\rm cr} \left(\frac{xT}{T_{\rm cr}} - (x-1) \right).$$

Determine the number x.

Problem 3 (25=15+10 marks)

Note: A homework exercise dealt with the link between the partition functions of the canonical and grand canonical ensembles. This problem concerns the link between the microcanonical and the canonical ensembles.

A thermodynamical system is described by entropy S or temperature $T = 1/(k_B\beta)$ together with other extensive variables X. As usual, we denote the count of microstates with energy E by $\Omega(E, X)$ and the canonical partition function by $Q(\beta, X)$.

(a) Show that, for given $Q(\beta, X)$,

$$\Omega(E,X) = Q(\beta,X) \mathrm{e}^{\beta E} \quad \text{with } \beta \text{ such that } EQ(\beta,X) = -\frac{\partial Q(\beta,X)}{\partial \beta}$$

(b) What, in turn, is $Q(\beta, X)$ for known $\Omega(E, X)$?

Problem 4 (**25**=15+10 marks)

For ideal gases, we know from lecture that the average occupation number is

$$\langle n_j \rangle = \frac{1}{\mathrm{e}^{\beta(\varepsilon_j - \mu)} \pm 1} \quad \left\{ \begin{array}{l} \mathrm{for \ fermions} \\ \mathrm{for \ bosons} \end{array} \right\},$$

where ε_j is the *j*th single-particle energy and μ is the chemical potential. In the boson case, assume that the temperature is sufficiently high that there is no Bose-Einstein condensation.

- (a) What is the corresponding expression for the correlation $\langle n_j n_{j'} \rangle \langle n_j \rangle \langle n_{j'} \rangle$?
- (b) Find the corresponding fluctuation $\langle \delta N^2 \rangle$ in the total number of particles, and verify that it is consistent with the general expression (page 85 in the lecture notes)

$$\langle \delta N^2 \rangle = \left(\frac{\partial \langle N \rangle}{\partial (\beta \mu)} \right)_{V,\beta}.$$