1. Thermal properties of a rubber band (20=8+4+8 marks)

For a certain rubber band of length L that consists of n moles of rubber, the differential of the internal energy U is

$$dU = T dS + \tau dL + \mu dn,$$

where T,S,τ,μ are the temperature, entropy, tension, and chemical potential, respectively. The equation of state $TS=\alpha\tau L$ holds for this rubber band, where $\alpha>0$ is a material-specific constant.

(a) Show that

$$U(S, L, n) = nf(S^{\alpha}L/n^{\alpha+1})$$

with an undetermined function f().

- **(b)** What is the analog of the Gibbs-Duhem equation?
- (c) For $f(x) = \gamma x$ with $\gamma = \text{constant}$, find $\mu(T, \tau)$ and verify that the analog of the Gibbs-Duhem equation is obeyed.

2. Two-dimensional boson gas (20 marks)

An ideal gas of bosons is confined to an area of size A. Does Bose-Einstein condensation occur in such a two-dimensional boson gas? If yes, what is the critical temperature for given area A?

3. Entropy of a quantum system (20=8+4+8 marks)

A quantum system with Hamilton operator H has the free energy

$$F(\beta) = \operatorname{Min}_{\rho} \left(\operatorname{tr} \left\{ H \rho + \frac{1}{\beta} \rho \log \rho \right\} \right) = \operatorname{tr} \left\{ H \rho_{\beta} + \frac{1}{\beta} \rho_{\beta} \log \rho_{\beta} \right\}$$

with $\rho_{\beta}=\mathrm{e}^{-\beta H}/\mathrm{tr}\left\{\mathrm{e}^{-\beta H}\right\}$, where the minimum is taken over all statistical operators ρ of this quantum system.

- (a) What is the entropy $S(\beta)$ in terms of ρ_{β} ?
- **(b)** If a constant energy E_0 is added to H, that is: $H \to H + E_0$, what are the resulting changes in F, ρ_{β} , and S?
- (c) When $|E_k\rangle$ with $k=1,2,3,\ldots$ are the pairwise orthogonal eigenkets of H, the probability of finding the system in the kth state is $p_k=\langle E_k|\rho_\beta|E_k\rangle$. Express $S(\beta)$ in terms of the p_k s and comment on the result.

4. A modified Ising model (40=4+8+16+12 marks)

A modified Ising model has N sites in a zigzag with links of strength J_1 between all pairs of next-neighbor sites and links of strength J_2 between every second pair of next-next-neighbor sites, so that the triangle 1,2,3 indicated in the picture contributes

$$-J_1(s_1s_2+s_2s_3)-J_2s_1s_3$$
 with $s_i=\pm 1$

to the energy. For $K_1=\beta J_1$ and $K_2=\beta J_2$, we denote the canonical partition function by $Q(N,K_1,K_2)$.

- (a) Show that $Q(N, K_1, 0) = 2^N \cosh(K_1)^N$ is the partition function for $J_2 = 0$.
- **(b)** Show that $Q(N,0,K_2)=2^N\cosh(K_2)^{\frac{1}{2}N}$ is the partition function for $J_1=0$.
- (c) Explain why a relation of the form

$$Q(N, K_1, K_2) = g^{\frac{1}{2}N} Q(\frac{1}{2}N, \widetilde{K}, 0)$$

must hold and determine g and \widetilde{K} as functions of K_1 and K_2 . Then find $Q(N,K_1,K_2)$.

(d) Verify that the partition function is

$$Q(N, K, K) = (e^{3K} + 3e^{-K})^{\frac{1}{2}N}$$

when $K_1 = K_2 = K$. Find the heat capacitance in this case.