
1 We have S = −
(
∂F

∂T

)
V

= − 4

T
F and therefore the entropy value for (Tj , Vj) is

Sj =
4π2

45

k4b
(h̄c)3

VjT
3
j ,

and we can express all quantities in terms of the temperature and the entropy. In particular,
we have F = −1

4ST and U = F + ST = 3
4ST .

(a) For the isothermal transitions 1 → 2 and 3 → 4, the work extracted is W1→2 =
F1 − F2 = −1

4(S1 − S3)T1 and W3→4 = F3 − F4 = −1
4(S3 − S1)T3. For the

isentropic transitions 2→ 3 and 4→ 1, the work extracted is W2→3 = U2−U3 =
3
4S3(T1 − T3) and W4→1 = U4 − U1 = 3

4S1(T3 − T1).
The heat absorbed in the isothermal transitions 1 → 2 and 3 → 4 is Q1→2 =
(S3 − S1)T1 > 0 and Q3→4 = (S1 − S3)T3 < 0, and there is no heat absorbed in
the isentropic transitions 2→ 3 and 4→ 1, Q2→3 = Q4→1 = 0.
As a check, one verifies immediately that the total work extracted is equal to the
net heat absorbed:

W1→2 +W2→3 +W3→4 +W4→1 = (S3 − S1)(T1 − T3) ,
Q1→2 +Q2→3 +Q3→4 +Q4→1 = (S3 − S1)(T1 − T3) .

(b) We get
(S3 − S1)(T1 − T3)

(S3 − S1)T1
=
T1 − T3
T1

for the efficiency, which is the expected

efficiency of a Carnot cycle.

2

(a) At the critical point, we have

(
∂P

∂v

)
T

= 0 and also

(
∂2P

∂v2

)
T

= 0. These require

RT

(v − b)2
=

2a

(v + c)3T
and

RT

(v − b)3
=

3a

(v + c)4T
or 3(v − b) = 2(v + c) .

Accordingly, the critical molar volume is vcr = 3b + 2c; then, the critical

temperature is Tcr =

(
8

27R

a

b+ c

)1/2

, and the critical pressure is Pcr =

1

12

(
2R

3

a

(b+ c)3

)1/2

. These give
Pcrvcr
RTcr

=
3b+ 2c

8(b+ c)
.
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(b) We know that
dP (T )

dT

∣∣∣∣∣
Tcr

=
∂P (T, v)

∂T

∣∣∣∣∣
Tcr,vcr

. Here, this gives

dP (T )

dT

∣∣∣∣∣
Tcr

=

(
R

v − b
+

a

(v + c)2T 2

)∣∣∣∣∣
Tcr,vcr

=
7

8

R

b+ c
= 7

Pcr

Tcr
.

Therefore, we have

P (T ) =

(
7
T

Tcr
− 6

)
Pcr

for temperatures just below the critical temperature.

3

(a) The single-particle energies are (j1 + j2)h̄ω with j1 = j2 = 0 for the ground state
and j1, j2 = 0, 1, 2, 3, . . . for the excited states (but not j1 = 0 and j2 = 0). For
j = j1+j2, there are j+1 states with energy εj = jh̄ω. Accordingly, the expected
number of bosons in the ground state and in the exited states are

〈N0〉 =
z

1− z
, 〈Nex〉 =

∞∑
j=1

(j + 1)z

eβεj − z
=
∞∑
j=1

(j + 1)z

e jβh̄ω − z
.

(b) For low temperature, βh̄ω � 1, we have
(j + 1)z

e jβh̄ω − z
∼= (j + 1)ze−jβh̄ω and only

the j = 1 term matters in the sum, so that

〈Nex〉 ∼= 2ze−βh̄ω =
2〈N0〉
〈N0〉+ 1

e−βh̄ω .

(c) The sum over j for 〈Nex〉 in (a) converges to a finite value for all positive temper-
atures and all values of the fugacity z ≤ 1, including z = 1. It follows that there
is a maximum number of bosons than can be in the excited states for T > 0, and
we get Bose–Einstein condensation if there are rather more particles than can fit
into the excited states.
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4

(a) m and w are intensive because they have the same values independent of the
system size; N is extensive since it is proportional to the system size.

(b) The canonical partition function is

Q(β,m,w,N) =
1

N !

[∫
(dr) (dp)

(2πh̄)3
e−β( 1

2mp2 + wr3)
]N

,

where ∫
(dp)

(2πh̄)3
e−β

1
2mp2

=
1

λ3
with λ = h̄

√
2πβ

m

as usual, and

∫
(dr) e−βwr

3
= 4π

∞∫
0

dr r2 e−βwr
3

=
4π

3βw
.

Accordingly, we have

Q(β,m,w,N) =
1

N !

(
4π

3λ3βw

)N

∝ β−
5
2
Nm

3
2
Nw−N .

(c) It follows that

1

N
〈E〉 = − 1

N

∂

∂β
log
(
Q(β,m,w,N)

)
=

5

2β
=

5

2
kbT ,

1

N
〈Ekin〉 =

m

Nβ

∂

∂m
log
(
Q(β,m,w,N)

)
=

3

2β
=

3

2
kbT =

3

5

〈E〉
N

,

1

N
〈Epot〉 = − w

Nβ

∂

∂w
log
(
Q(β,m,w,N)

)
=

1

β
= kbT =

2

5

〈E〉
N

.

Clearly, 〈Ekin〉+ 〈Epot〉 = 〈E〉.
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