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We have S = — <8 > = ——F and therefore the entropy value for (T}, V;) is
1%

oT T
o 472 ké 3
745 (he)? T

and we can express all quantities in terms of the temperature and the entropy. In particular,
we have F'= —1ST and U = F + ST = 35T.

(a)

(b)

For the isothermal transitions 1 — 2 and 3 — 4, the work extracted is Wi_,9 =
F, — F = —%(Sl — Sg)Tl and Wy_4 = F3 — Fy = —i(Sg — Sl)T3. For the
isentropic transitions 2 — 3 and 4 — 1, the work extracted is Wo_,3 = Uy — Us =
%Sg(Tl — Tg) and W4_>1 = U4 — U1 = %Sl(Tg — Tl).

The heat absorbed in the isothermal transitions 1 — 2 and 3 — 4 is Q142 =
(S3 —S1)T1 > 0 and Q3,4 = (S1 — S3)T3 < 0, and there is no heat absorbed in
the isentropic transitions 2 —+ 3 and 4 — 1, Q23 = Q41 = 0.

As a check, one verifies immediately that the total work extracted is equal to the
net heat absorbed:

Wise +Woz + Wayy + Wy = (53— S1)(Th — T3) ,
Q152+ Qa3+ Q354 + Qa1 = (53— S1)(Th — T3) .

(S5 —S1) (T —T3) T — Ty

(Ss—sS)Tv T
efficiency of a Carnot cycle.

We get for the efficiency, which is the expected

oP 0*P
At the critical point, we have () =0andalso | —5 | = 0. These require
ov )T 0 T

v V2
RT 2a RT 3a
oo wrorT ™ o wromr O T =2vto
Accordingly, the critical molar volume is v, = 3b + 2¢; then, the critical
8 1/2

temperature is Ty, = (27Rbic) , and the critical pressure is P, =
1 (QR a )1/2 These give Py 3b+ 2c¢
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(b)

dP(T OP(T,v .
We know that (T) = (T, v) . Here, this gives
dT oT
Ter Ter,Ver
dP(T) R a 7T R Py
dT . v—>b (v+¢)*T? _ 8b+ec T,

Therefore, we have

P(T) = (7TT - 6) Pur

for temperatures just below the critical temperature.

(a)

(b)

(c)

The single-particle energies are (ji + jo)hw with j; = jo = 0 for the ground state
and ji,j2 = 0,1,2,3,... for the excited states (but not j; = 0 and jo = 0). For
J = j1+j2, there are j+1 states with energy €; = jhw. Accordingly, the expected
number of bosons in the ground state and in the exited states are

(No) = —— <Nex>zzwzz(j+l)2

ejﬂhw —

U+Dz o
e]ﬂhw — 2z a
the j = 1 term matters in the sum, so that

For low temperature, Shw > 1, we have (7 + 1)ze_jﬂhw and only

oo —Bhw _ 2(No)  _Bhw
(Nex) = 2ze o) + Te .

The sum over j for (Ne) in (a) converges to a finite value for all positive temper-
atures and all values of the fugacity z < 1, including z = 1. It follows that there
is @ maximum number of bosons than can be in the excited states for T > 0, and
we get Bose—Einstein condensation if there are rather more particles than can fit
into the excited states.
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(a)

(b)

m and w are intensive because they have the same values independent of the
system size; N is extensive since it is proportional to the system size.

The canonical partition function is

d d a1 N
Q(,B,m,w,]\f):% {/((’;7)”%)5)6 5(2mp2+wr3)] ’

where

(dp) —pLlpz_ 1 . . |2np
[ e = it A=my/ S

as usual, and

¥ 1
/(dr) o Pur® _ 47r0/dr r2 e Pur® — 357;, )

Accordingly, we have

1 4 \N ~3N._3N. _N
Q(B,m,w,N)—M(MU) o B-ENmEN N |

It follows that

5 5
N<E> = _Naﬂ ]Og(Q(ﬁvmawaN)) = % = §kBT7
1 _ m 0 3 3 _ 3(E)
v Buan) = 575 5, (@B w.N)) = 55 = SkaT = 555
1 w0 1 _2(E)
~ (Bpot) = -~ N5 5u log(Q(B,m,w,N)> =5 = kT =2

Clearly, (Exin) + (Epot) = (E).
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