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3 From (3.5.13) we here get
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(a) There are as many as

(
M

N

)
ways of distributing N constituents over M sites.

Each configuration has the canonical partition function of (2.5.30), so that we
have
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for the canonical partition function.

(b) The binomial factor
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has no bearing on the expected value of the energy,

nor its spread, so that the expressions in (2.5.31) and (2.5.33) apply,
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(c) In accordance with (3.1.6), we have
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(d) We find
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