Proceeding from dF = —SdT — PdV + udN we first get
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and then use the Maxwell relation (1.10.4) to arrive at
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For the photon gas there is no “constant N" condition, so that
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applies. Now, in Section 3.4, we have the statements P = gu =5 (he)s " which we
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combine with P = — a— to conclude that ' = 7LV<kB ) x —VT* with a
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positive proportionality factor. It follows first that S = ( ) = —4 x VT3,
then that F oc —V(S/V)*? and ory _ 1y (S/V)*3, so that
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<0S> 35 Accordingly, we have S <8S>V —P= §P <8V> , indeed.
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In Cy = —-T (?ﬂi) we use —BF = logQ = log(q(B,V,N)N/N!) to
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establish
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where
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is a product of three factors. Therefore, log(q(3,V, N)) is a sum of three terms, and
sois Cy = O3V + o™ 4+ i,




From (3.5.13) we here get
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and then, as in (3.5.20)
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For low temperatures, we have kgT" < hwq or Shwy > 1 and sinh(%ﬁhwo) =
so that
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For high temperatures, we have kgT > hwy or Shwy < 1 and sinh(%ﬁhwo) =
3 Bhwo + §(38Mwo)?, so that
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(a) There are as many as N) ways of distributing N constituents over M sites.

Each configuration has the canonical partition function of (2.5.30), so that we
have

QUI(, N) = (%) [2cosh(38E0))"

for the canonical partition function.
M
(b) The binomial factor N has no bearing on the expected value of the energy,

nor its spread, so that the expressions in (2.5.31) and (2.5.33) apply,
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(c) In accordance with (3.1.6), we have

ZM)(B, 2) = i NQM(B,N) = [1 + 2z cosh(8Ey)] ™ .
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(d) We find
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and thus first
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and then
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so that the spread of N is \/(5N2> ~ \/(N>

Note: The recognition that 2z cosh(%BEo) < 1 permits the simplifying approxima-
tions
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from which we learn that <N> =N when M > N.




