Problem 1 (25 marks)

For the ideal gas of fermions, and also for the ideal gas of bosons above the critical temperature, we have $\log \left(Z(\beta,V,z)\right) = \frac{V}{\lambda^3}h(z)$ with the appropriate function h(z) of the fugacity z. We know that the adiabatic equation of state $P^3V^5 = {\rm constant}$ holds in the dilute-gas limit when h(z)=z. What is the adiabatic equation of state for an arbitrary h(z)?

Problem 2 (25 marks)

Consider the standard one-dimensional Ising chain (or ring) with N sites, on-site energy E_0 , and next-neighbor interaction strength J. Denote by N_+ and N_- the number of sites with $s_j=+1$ or $s_j=-1$, respectively. Likewise, $N_+^{(\mathrm{nn})}$ is the number of next neighbors with $s_js_{j+1}=+1$, and $N_-^{(\mathrm{nn})}$ is the number of next neighbors with $s_js_{j+1}=-1$. What are the expected values of N_+ , N_- , $N_+^{(\mathrm{nn})}$, and $N_-^{(\mathrm{nn})}$ in terms of N, βE_0 , and βJ ?

Problem 3 (50=5+5+25+15 marks)

Consider a modified Ising chain (or ring) with N sites, no on-site energy, and next-neighbor interaction strength J. There is also a next-next-neighbor interaction of strength J' between every second site. Symbolically, then, we have this picture:

As usual, we use $K = \beta J$ and $K' = \beta J'$ for convenience.

- (a) What is the free energy F(K, 0, N) when K' = 0?
- **(b)** What is the free energy F(0, K', N) when K = 0?
- (c) For $K \neq 0$ and $K' \neq 0$, express the canonical partition function in terms of 2×2 matrices and then find the corresponding free energy F(K, K', N). Verify that you get the expected expressions when K' = 0 or K = 0.
- (d) Determine the heat capacity for K'=0 and find the leading correction when $0 < K' \ll 1$.