
1 A transfer of 4 × 10−3 J of heat at 300 K adds ∆S =
4

3
× 10−5 J/K to the entropy

and
∆S

kb
' 1018 to log Ω, since kb =

R

Na
' 8 J/K

6× 1023
=

4

3
× 10−23 J/K. Accordingly, the

number of microstates is increased by a factor of about e1018 , which is colossal.

2

(a) Upon writing Ek =
∑N

j=1E0sj with sj = 0 or 1 for the energy of the kth
configuration, specified by the values of s1, s2, . . . , sn, we have

Q(β,N) =
∑
k

e−βEk =
∑
all sj

e
−βE0

∑
j sj

=

( ∑
s=0,1

e−βE0s

)N
=
(

1 + e−βE0

)N
for the canonical partition function and, then,

S = −kb
∑
k

pk log pk

∣∣∣∣∣
pk=Q−1e−βEk

= kb logQ+ kbβ〈Ek〉

with

〈Ek〉 =
∑
k

pke
−βEk = −

(
∂ logQ

∂β

)
N

=
NE0

eβE0 + 1
.

Accordingly, we find

S(β,N) = kbN log
(

1 + e−βE0

)
+ kbN

βE0

eβE0 + 1
.

(b) Since the average energy is E0 times the average number of molecules with energy
Eb = E0, the average number of molecules with energy Ea = 0 is

N − 〈Ek〉
E0

=
N

1 + e−βE0
.

(c) In a configuration with energy E, there are E/E0 molecules with energy E0 and
N − E/E0 molecules with energy 0. The count of such configurations is

Ω(E,N) =
N !

(E/E0)! (N − E/E0)!
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and

S(E,N) = kb

(
E

E0
log

NE0

E
+
NE0 − E

E0
log

NE0

NE0 − E

)
is the resulting entropy. Upon identifying E with 〈Ek〉, this S(E,N) becomes
S(β,N) of part (a).

(d) The average length is `a times the average number of molecules with energy Ea
plus `b times the average number of molecules with energy Eb, that is

L(T,N) = `a
N

1 + e−βE0
+ `b

N

eβE0 + 1
= N

`ae
βE0 + `b

eβE0 + 1
.

When the temperature increases (and eβE0 decreases) the fraction of molecules
in the excited state increases, and since `b < `a the length of the rubber band
decreases.
At high temperatures (eβE0 → 1), we have L = 1

2N(`a + `b), consistent with
the expectation that the molecules should be equally distributed over the two
states. At low temperatures (eβE0 →∞), we have L = N`a, consistent with the
expectation that all molecules are in the energetic ground state.

3

(a) Since N = z

(
∂ logZ

∂z

)
β,V

= logZ = βPV , it follows that PV is constant for

isothermal changes, that is: when N and β are constant.

(b) Since

S

kb
= −β2

(
∂ β−1 logZ

∂β

)
N,z

−N log z = (κ+1) logZ−N log z = (κ+1−log z)N ,

the fugacity z is constant for isentropic changes. Then β−κV = constant implies
β−κ ∝ V −1 and P ∝ β−κ−1 ∝ V −1−1/κ. If follows that PV 1+1/κ = constant

for isentropic changes. For κ =
3

2
, this gives PV

5
3 = constant, as it should.

Alternatively, we can use U = 〈E〉 = −
(
∂ logZ

∂β

)
V,z

=
κ

β
Z = κPV and dU =

−PdV for isentropic changes (dS = 0 and dN = 0). Together, they establish
(1 + κ)PdV + κV dP = 0 or P κV 1+κ = constant for isentropic changes.

(c) In view of

Z(β, V, z) = exp

(
(kbT0β)−κ

V z

V0

)
=

∞∑
N=0

zNQ(β, V,N) ,
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the canonical partition function is

e−βF = Q(β, V,N) =
1

N !

(
(kbT0β)−κ

V

V0

)N
= eN

(
(kbT0β)−κ

V

NV0

)N
and so we find

F (T, V,N) = −NkbT
(

1 + κ log
T

T0
+ log

V

NV0

)
.

In the Legendre transformation U = F + TS, we need to solve

S = −
(
∂F

∂T

)
V,N

= −F
T

+Nkbκ = Nkb

(
κ+ 1 + κ log

T

T0
+ log

V

NV0

)
for T , which gives

T = T0

(
V

NV0

)−1/κ
e

S
κkbN

− κ+1
κ .

So, U = F + TS = NκkbT reads

U(S, V,N) = NκkbT0

(
V

NV0

)−1/κ
e

S
κkbN

− κ+1
κ .

(d) The equations of state are exactly those of a classical ideal gas with adiabatic
index γ = 1 + 1/κ. Therefore, we have CP − CV = Nkb and CP = γCV , which
imply CV = κNkb and CP = (κ+ 1)Nkb.

4

(a) Here we have a standard Ising chain, for which

F (K, 0, N) = −N
β

log
(
2 cosh(K)

)
.

(b) Here we have two standard Ising chains, each with 1
2N sites and a next-neighbor

interaction energy J ′, for which

F (0,K ′, N) = 2F (K ′, 0, 12N) = −N
β

log
(
2 cosh(K ′)

)
.
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(c) With sjsj+1 = qj , we have

Q(K,K ′, N) =
∑
all sj

e
K
∑
j sjsj+1 +K ′

∑
j sj−1sj+1

= 2
∑
all qj

e
K
∑
j qj +K ′

∑
j qjqj+1 ,

where the factor of 2 accounts for the degeneracy associated with a global sign
change (all sj to −sj). The qj expression is that of a standard Ising chain with
next-neighbor interaction energy J ′ and on-site energy −2J , so that

Q(K,K ′, N) = 2

(
eK
′
cosh(K) +

√
e2K ′ sinh(K)2 + e−2K ′

)N
where we use λ+ of (4.2.36) with the replacements βE0 → −2K and βJ → K ′.
The resulting free energy is

F (K,K ′, N) = −N
β

log

(
eK
′
cosh(K) +

√
e2K ′ sinh(K)2 + e−2K ′

)
.

For K ′ = 0 or K = 0, we get the expressions of parts (a) and (b), as we should.

(d) We have

C

kbN
= − 1

kbN
T

(
∂2F

∂T 2

)
V,N

= −β2
(
∂2(βF/N)

∂β2

)
V,N

=

(
K2 ∂

2

K2
+ 2KK ′

∂

∂K

∂

∂K ′
+K ′

2 ∂
2

K ′2

)
log

(
as above

)
,

where the argument of the logarithm is

eK
′
cosh(K) +

√
e2K ′ sinh(K)2 + e−2K ′ ∼= 2 cosh(K)

(
1 + tanh(K)2K ′

)
to first-order in K ′. This yields

C

kbN
∼=
(
K2 ∂

2

K2
+ 2KK ′

∂

∂K

∂

∂K ′

)(
log
(
2 cosh(K)

)
+ tanh(K)2K ′

)
=

K2

cosh(K)2
+

2K2K ′

cosh(K)2

(
1− 3 tanh(K)2

)
+

4KK ′

cosh(K)2
tanh(K) .
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