Tutorial for Chapter 1

- 1) Memorize Maxwell's equations in general form and in electrically neutral, non-magnetic materials and be prepared to reproduce them from memory on an exam.
- Define that $\mathbf{r} = (\hat{x} + 2\hat{y} 3\hat{z})$ m and $\mathbf{r}_0 = (-\hat{x} + 3\hat{y} + 2\hat{z})$ m, (i) find the magnitude of \mathbf{r} , (ii) find the magnitude of $\mathbf{r} \mathbf{r}_0$, and (iii) find the angle between \mathbf{r} and \mathbf{r}_0 .
- Define that $\mathbf{F}(\mathbf{r}) = xy \,\hat{x} + (1-yz) \,\hat{y} + xz^2 \,\hat{z}$, (i) find the divergence of $\mathbf{F}(\mathbf{r})$, and (ii) find the carl of $\mathbf{F}(\mathbf{r})$.
- 4) Define that $f(x, y, z) = 1/(x^2+y^2+z^2)$, find the derivative of f(x, y, z).
- By applying the same mathematical trick described in Section 1.7, derive the wave equation for the magnetic field **B** in vacuum (i.e. $J_{free} = 0$ and P = 0).
- 6) Check that $\mathbf{E}(\mathbf{r} \cdot \hat{\mathbf{u}} c \ t + \phi)$ satisfies Eq. (1.32), where \mathbf{E} is an arbitrary functional form, $\hat{\mathbf{u}}$ is a unit vector, ϕ is a constant phase, and c is a constant speed.
- Verify that a summation of waves with different unit vectors $\Sigma_i \mathbf{E}_i(\mathbf{r} \cdot \hat{\mathbf{u}}_i c t + \phi_i)$ is also a solution of Eq. (1.32).
- Suppose that an electric field is given by $\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 \cos(\mathbf{k} \cdot \mathbf{r} \omega t + \phi)$, where \mathbf{k} is a constant wave vector perpendicular to \mathbf{E}_0 , ω is a constant angular frequency, and ϕ is a constant phase. Show that $\mathbf{B}(\mathbf{r}, t) = \mathbf{k} \times \mathbf{E}_0 / \omega \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)$ is consistent with Eq. (1.3).
- 9) Memorize the wave equations Eq. 1.31 and Eq. 1.32, and be prepared to reproduce them from memory on an exam.
- Use Microsoft Excel software to produce several snapshots of a wave: $\cos[(x-ct)2\pi/\lambda]$ with $c = 3 \times 10^8$ m/s and $\lambda = 5 \times 10^{-7}$ m, similar to Figure 1.7.

2, i)
$$|\vec{r}| = \sqrt{1^{2} + 2^{2} + (-3)^{2}} = \sqrt{14} \text{ M}$$

ii) $|\vec{r} - \vec{r}_{0}| = \sqrt{(1+1)^{2} + (2-3)^{2} + (-3-2)^{2}} = \sqrt{30} \text{ m}$

iii) $|\vec{r}_{0}| = \sqrt{(1+1)^{2} + (2-3)^{2} + (-3-2)^{2}} = \sqrt{30} \text{ m}$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = |\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = |\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = |\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = |\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = |\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = |\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{14}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2}} = \sqrt{(1+1)^{2} + 3^{2}} = \sqrt{(1+1)^{2} + 3^{2}}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2} + 2^{2}} = \sqrt{(1+1)^{2} + 3^{2}}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2}} = \sqrt{(1+1)^{2} + 3^{2}}} = \sqrt{(1+1)^{2} + 3^{2}}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2}} = \sqrt{(1+1)^{2} + 3^{2}}} = \sqrt{(1+1)^{2} + 3^{2}}}$$

$$|\vec{r}_{0}| = \sqrt{(1+1)^{2} + 3^{2}} = \sqrt{(1+1)^{2} + 3^{2}}} = \sqrt{(1+1)^{2$$

 $= y\hat{x} + (-\hat{x}^2)\hat{y} + (-\hat{x})\hat{z}^2$

2

4.
$$\nabla f = \frac{\partial f}{\partial x} \hat{x}^{1} + \frac{\partial f}{\partial y} \hat{y}^{1} + \frac{\partial f}{\partial z} \hat{z}^{1}$$

$$= -\frac{g \chi \hat{\chi}^{2}}{(\chi^{2} + y^{2} + z^{2})^{2}} - \frac{2 \chi \hat{y}^{1}}{(\chi^{2} + y^{2} + z^{2})^{2}} - \frac{z z \hat{z}^{2}}{(\chi^{2} + y^{2} + z^{2})^{2}}$$

$$=-\frac{2(xx^{2}+yy^{2}+z^{2})^{2}}{(x^{2}+y^{2}+z^{2})^{2}}$$

5.
$$\vec{P} = 0$$
, $\vec{T}_{free} = 0$

$$\therefore \nabla x \vec{B} = \mathcal{E}_{\delta} \frac{\partial \vec{E}}{\partial t}$$

$$\nabla \times (\nabla \times \vec{B}) = \nabla (\nabla \cdot \vec{B}) - \nabla^2 \vec{B} = -\nabla^2 \vec{B}$$

$$-\nabla^2 \frac{\vec{\beta}}{\mu_0} = - \frac{\vec{\beta}}{\vec{\beta}t} \left(\frac{\vec{\beta}}{\vec{\beta}t} \right)$$

$$\nabla^2 \vec{\beta} = M_0 \mathcal{E}_0 \frac{\partial^2}{\partial t^2} \vec{\beta}$$

6.
$$\nabla^{2}\vec{E} = M_{0}\mathcal{E} \frac{\partial^{2}}{\partial t^{2}}\vec{E}$$

$$\vec{E} = \vec{E}(\vec{r}\cdot\vec{\mu} - ct + \phi)$$

$$\frac{\partial^{2}}{\partial t^{2}}\vec{E} = c^{2}\vec{E}(\vec{r}\cdot\hat{\mu} - ct + \phi)$$

$$\nabla^{2}\vec{E} = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}\right)\vec{E}$$

$$\frac{\partial^{2}}{\partial x^{2}}\vec{E} = \frac{\partial^{2}}{\partial x^{2}}\vec{E}(xux + yuy + zuz)$$

$$\frac{\partial^{2}}{\partial x^{2}} \vec{E} = \frac{\partial^{2}}{\partial x^{2}} \vec{E} \left(x u_{x} + y u_{y} + z u_{z} - ct + \phi \right)$$

$$= U_{x}^{2} \vec{E} \left(x u_{x} + y u_{y} + z u_{z} - ct + \phi \right)$$

$$= U_{x}^{2} \vec{E} \left(x u_{x} + y u_{y} + z u_{z} - ct + \phi \right)$$

$$= U_{y}^{2} \vec{E} \left(x u_{x} + y u_{y} + z u_{z} - ct + \phi \right)$$

$$= U_{y}^{2} \vec{E} = U_{y}^{2} \vec{E} \left(x u_{x} + y u_{y} + z u_{z} - ct + \phi \right)$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) \vec{E} = \left(\frac{u_x^2 + u_y^2 + u_y^2}{4}\right) \vec{E}$$

$$= \vec{E}$$

$$\vec{E} = M_0 \mathcal{E}_0 C^2 \vec{E} = \vec{E}$$

7.
$$\nabla^2 \vec{E} = \nabla^2 \sum_i \vec{E}_i$$

$$= \sum_i \vec{\nabla}^2 \vec{E}_i$$

$$= \sum_i \vec{E}_i$$

$$= \sum_i \vec{E}_i$$

$$= \mu_0 \mathcal{E}_0 \frac{\partial^2}{\partial t^2} \sum_i \vec{E}_i$$

$$= \mu_0 \mathcal{E}_0 \frac{\partial^2}{\partial t^2} \vec{E}_i$$

$$= \mu_0 \mathcal{E}_0 \frac{\partial^2}{\partial t^2} \vec{E}_i$$

$$= \mu_0 \mathcal{E}_0 \frac{\partial^2}{\partial t^2} \vec{E}_i$$

$$= \sum_i \vec{E}_i$$

$$= \sum_i \vec{E}_i$$

$$= \sum_i \vec{E}_i$$

$$= \sum_i \vec{E}_i$$
Thus
$$\nabla^2 \vec{E} = \mu_0 \mathcal{E}_0 \frac{\partial^2}{\partial t^2} \vec{E}_i$$

8.
$$\vec{E} = \vec{E}_o \cos(\vec{k} \cdot \vec{r} - \omega t + \phi)$$

$$= (Ex \hat{k} + Ey \hat{y} + E_3 \hat{z}) \cos(\kappa x + \kappa y + \kappa z z - \omega t + \phi)$$

$$\nabla x \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \hat{x} & \hat{z} & \hat{y} \end{vmatrix}$$

$$= (E_3 \sin\theta k_y + E_3 \sin\theta k_z) \hat{x}$$

$$+ (-E_3 \sin\theta k_z + E_3 \sin\theta k_x) \hat{y}$$

$$+ (-E_3 \sin\theta k_x + E_3 \sin\theta k_x) \hat{y}$$

$$+ (-E_3 \sin\theta k_x + E_3 \sin\theta k_x) \hat{y}$$

$$+ (-E_3 \sin\theta k_x + E_3 \sin\theta k_x) \hat{y}$$

$$= \vec{k} \times \vec{E}_o / \omega \sin\theta (-\omega) (-\omega)$$

$$= \vec{k} \times \vec{E}_o \sin\theta \hat{x} + E_3 \sin\theta \hat{x} +$$