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Suggested Solutions

Q1

A

ρ(r′, θ′) =
kR

r′2
(R− 2r′) sin θ′

Vmono =
1

4πε0

(
1

r

∫
ρ(τ ′) dτ ′)

=
2π

4πε0

1

r

∫ R

0

kR

r′2
(R− 2r′)r′2 dr′

∫ π

0

sin θ sin θ dθ

Consider the dr′ integration :∫ R

0

(R− 2r′) dr′ = Rr′ − r′2 |R0
= 0

so the monoopole term is zero.

Vdipole =
1

4πε0

1

r2

∫
r′ cos θ′ρ dτ ′

=
kR

2ε0r2

∫ R

0

r′(R− 2r′)

∫ π

0

sin2 θ′ cos θ′ dθ′

Consider the dθ′ integration:∫ π

0

sin2 θ′ cos θ′dθ′ =
1

3
sin3 θ|π0

= 0

so the dipole term is zero.
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Vquad =
1

4πε0

1

r3

∫
r′2(

3

2
cos θ − 1

2
)ρ dτ ′

=
kR

4πε0r3

∫ R

0

(R− 2r′)r′2 dr′
∫ π

0

(3 cos2 θ − 1) sin θ′ dθ′

=
kR

4ε0r3
(
Rr′3

3
− 1

2
r′4)|R0 (cos θ − cos3 θ)|π0

=
kR

4ε0r3
(−R4

6
)(−2− 2)

=
kR5

6ε0r3

(B)

(i)

~Ein = −∇Vin

= − ρ

3ε0

(
∂

∂r
(r cos θ)r̂ +

1

r

∂

∂θ
(r cos θ)θ̂

= − ρ

3ε0

(cos θr̂ − sin θθ̂)

= − ρ

3ε0

ẑ

(ii)

~Eout = −∇Vout

= −ρR3

3ε0

(
∂

∂r

cos θ

r2
r̂ +

1

r

∂

∂θ

cos θ

r2
θ̂)

= −ρR3

3ε0

(−2 cos θ

r3
r̂ − sin θ

r3
θ̂)

=
ρR3

3ε0r3
(2 cos θr̂ + sin θθ̂)
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Q2

(A)

The magnetic field ~B inside a soleniod is µ0nIẑ, and 0 outside. For ~A inside the
solenoid, consider a circular Amperian loop of radius s < R coaxial with the wire.
Then, ∮

~A · d~l =

∫
~B · d~a

: A(2πs) =

∫ s

0

(µ0nI)(2πs ds)

: A =
1

2πs
(πµ0nIs2)

: ~A =
µ0nIs

2
φ̂

For ~A outside the solenoid, consider the same Amperian loop but with s > R.
Then, ∮

~A · d~l =

∫
~B · d~a

: A(2πs) =

∫ R

0

(µ0nI)(2πs ds)

: A =
1

2πs
(πµ0nIR2)

: ~A =
µ0nIR2

2s
φ̂

∇× ~Ain =
µ0nI

2
(∇× s)φ̂

=
µ0nI

2

1

s

∂

∂s
s2ẑ

= µ0nIẑ

= ~Bin

∇× ~Aout = 0 = ~Bout

B

Consider 2 sets of potential:

~A′ = ~A + ~α

V ′ = V + β

3



such that ~A and ~A′ give the same ~B and ~E :

~B = ∇× ~A = ∇× ~A′

∇× ~α = 0.

Writing α as the gradient of a scalar λ,

α = ∇λ (∇×∇λ = 0)

~E = −∇V − ∂

∂t
~A

= −∇V ′ − ∂

∂t
~A′

hence

∇β +
∂

∂t
~α = 0

∇(β +
∂

∂t
λ) = 0

The term in parantheses is independent of position, but it could depend on
time :

β = − ∂

∂t
+ k(t)

We can absorb k(t) into λ, without affecting the gradient. Hence,

~A′ = ~A +∇λ,

V ′ = V − ∂

∂t
λ.

We can add ∇λ to ~A, provided we simulatenously subtract ~∂∂tλ from V .

4



Q3

(A)

As ~Aabove = ~Abelow at every point on the surface, ∂ ~A
∂x

and ∂ ~A
y

are continuous, and

the discontinuity is confined to ∂ ~A
∂z

.

~B = ∇× ~A

~Babove − ~Bbelow = x̂

(
−

∂Ay(above)

∂z
−

∂Ay(below)

∂z

)
+ ŷ

(
∂Ax(above)

∂z
−

∂Ax(below)

z

)
= µ0( ~K × n̂)

= −µ0Kŷ

Equating x̂ and ŷ components,
y component : (

∂Ay

∂z

)
(above)

=

(
∂Ay

∂z

)
below

x component : (
∂Ax

∂z

)
(above)

−
(

∂Ax

∂z

)
(below)

= −µ0k

The normal derivative of the component of ~A parallel to ~k suffers a discontinuity

∂ ~Aabove

∂n
−

~Abelow

∂n
= −µ0

~k

.

(B)

For the static case the magnetic field due to a sheet current is ~E = µ0K
2

ŷ. It is
independent of the distance x from the plane. The magnetic vector potential is
then given by ~A = µ0K

2
xẑ. Thus the retarded potential is expected to be in the

z direction. For above the plane, in the region ±x, we expect therefore

~A =
µ0

4π

∫ ~K

r
da

=
µ0ẑ

4π

∫
K(tr)√
r2 + x2

2πr dr

=
µ0ẑ

2

∫
K(t−

√
r2 + x2c√

r2 + x2
r dr
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The maximum r is given by t −
√

r2 + x2/c = 0, or rmax =
√

c2t2 − x2. (since
K(t) = 0 for t < 0).

~A =
µ0K0ẑ

2

∫ ∞

0

r√
r2 + x2

dr

=
µ0K0ẑ

2

√
r2 + x2|r∞0

=
µ0K0(ct− x)

2
ẑ

~E(x, t) =
∂ ~A

∂t

= −µ0K0c

2
ẑ

for ct > x, and 0, for ct < x.

~B(x, t) = ∇× ~A

=
µ0K0ŷ

2

for ct > x, and 0, for ct < x.
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Q4

(A)

(i)

The plane wave solution for ~E is

~E(z, t) = ~E0e
i(kz−ωt)

Substituting inside

∇2 ~E = µε
∂2 ~E

∂t2
+ µσ

∂ ~E

∂t
,

gives
k2 = −µεω2 − iµσω

. Write k = k+ + ik−. The above becomes

k2
+ − k2

− + 2ik−k+ = µεω2
+iµσω

. Comparing real and imaginery parts gives

k2
+ − k2

− = µεω2

2k−k+ = µσω

k− =
µσω

2k+

k2
+ −

(
µσω

2k+

)2

= µεω2

k4
+ − k2

+µεω2 −
(µσω

2

)2

= 0

k2
+ =

µεω2 ±
√

(µεω2)2 + 4
(

µσω
2

)2

2

=
µεω2

2
± µεω2

2

√
1 +

(µσω)2

(µεω2)2

=
µεω2

2

[
1±

√
1 +

( σ

εω

)2
]

k+ = ω

√
µε

2

[
1 +

√
1 +

( σ

εω

)2
] 1

2

A similar derivation for k− results in

k± = ω

√
µε

2

[√
1 +

( σ

εω

)2

± 1

] 1
2
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(ii)

Consider ~E polarised in the x-direction.

~E(z, t) = E0e
−k−zei(k+z−ωt)x̂

~B(z, t) =
|k|
ω

E0e
−k−zei(k+z−ωt)ŷ

Now,

k = k+ + ik− = |k|eiφ = |k|(cos φ + i sin φ)

|k| =
√

k2
+ + k2

− = ω

√
εµ(1 +

( σ

ωε

)2

)
1
2

k+ = |k| cos φ

k− = |k| sin φ

φ = tan−1 k−
k+

The amplitudes are complex in general,

E0 = E0e
iδE

B0 = B0e
iδB

B0e
iδB =

|k|eiφ

ω
E0e

iδE

so ~E and ~B are no longer in phase, and

δB − δE = φ = tan−1 k−
k+

so the magnetic field lags behind the electric field ~E.
In a good conductor,

k+ = ω

√
µε

2

[
1 +

√
1 +

( σ

εω

)2
] 1

2

≈ ω

√
µε

2

( σ

εω

) 1
2

≈ k−

so

tan−1 k−
k+

≈ tan−1 1

=
π

4

and the magnetic field lags behind the electric field by 450.
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iii

< u > =
1

2
< (εE2 +

1

µ
B2) >

=
1

4
E2

0e
−2k−z(ε +

k2

µω2
)

=
1

4
E2

0e
−2k−zε

(
1 +

√
1 + (

σ

εω
)2

)
The 1 witin the paranthesis comes from the electrical contribution and the other
term, which is larger than 1, comes from the magnetic contribution. Hence, the
magnetic contribution always dominates.

(B)

Consider the geometry as shown : In general, if the velocity of the train ~v makes

an angle θ with the observer’s line of sight, the extra distance covered is L′ cos θ.
In the time L′ cos θ/c, the train moves a distance (L′ − L), such that

L′ cos θ

c
=

L′ − L

v

. That is,

L′ =
L

1− v cos θ
c

, so that the effect of retardation is the multiplication of the volume of a point
charge by a factor of

1

1− r·~v
c

, so that ∫
ρ(~r′, tr) dτ ′ =

q

1− ~r·~v
c

The electric potential is thus

V (~r, t) =
1

4πε0

qc

rc−~r · ~v
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. The current density is ρ~v.

~A(~r, t) =
µ0

4π

∫
ρ(~r′, tr)~v(tr)

r
dτ ′

=
µ0

4π

~v

r

∫
ρ(~r′, tr) dτ ′

=
µ0

4π

qc~v

rc−~r · ~v

=
~v

c2
V (~r, t).
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