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Consider the dr’ integration :
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so the monoopole term is zero.
1 1
Viipole = P r'cos @' p dr’
LR R ™
= / r'(R—2r") / sin? @ cos 0’ d’
2€0T2 0 0

Consider the df’ integration:
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so the dipole term is zero.
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Q2
(A)

The magnetic field B inside a soleniod is ponlz, and 0 outside. For A inside the
solenoid, consider a circular Amperian loop of radius s < R coaxial with the wire.

Then,
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For A outside the solenoid, consider the same Amperian loop but with s > R.

Then,
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Consider 2 sets of potential:

Vi = V43



such that A and A’ give the same Band E :

B = VxA=VxA
0.
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Writing « as the gradient of a scalar A,
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The term in parantheses is independent of position, but it could depend on
time :
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We can absorb k(t) into A\, without affecting the gradient. Hence,
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We can add VA to /T, provided we simulatenously subtract DOt from V.



Q3

(A)

As Aupove = Aperow at every point on the surface, % and % are continuous, and

the discontinuity is confined to %—A

—

B=VxA

Babove - Bbelow
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Equating £ and y components,

(above) below
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The normal derivative of the component of A parallel to k suffers a discontinuity

X component :

ajabove jbelow o E
on on Ho

(B)

For the static case the magnetic field due to a sheet current is E = ”OK y. It is
independent of the distance z from the plane. The magnetic vector potentlal is
then given by A= “OK E= 2. Thus the retarded potential is expected to be in the
z direction. For above the plane, in the region +x, we expect therefore
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The maximum 7 is given by t — V72 + 22/c = 0, or Tpee = V32 — 22, (since
K(t) =0 for t < 0).
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for ¢t > x, and 0, for ct < z.

B(z,t) = VxA
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for ¢t > x, and 0, for ct < .
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(A)
(i)
The plane wave solution for E is
E(z,t) = Ege'h==
Substituting inside
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. Write k = k; +tk_. The above becomes
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. Comparing real and imaginery parts gives
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A similar derivation for k_ results in
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(ii)
Consider E polarised in the x-direction.
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Now,
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The amplitudes are complex in general,
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so E and B are no longer in phase, and
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so the magnetic field lags behind the electric field E.
In a good conductor,
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and the magnetic field lags behind the electric field by 45°.
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iii
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The 1 witin the paranthesis comes from the electrical contribution and the other
term, which is larger than 1, comes from the magnetic contribution. Hence, the
magnetic contribution always dominates.

(B)

Consider the geometry as shown : In general, if the velocity of the train ¢ makes

L
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an angle 6 with the observer’s line of sight, the extra distance covered is L’ cos 6.
In the time L' cosf/c, the train moves a distance (L' — L), such that

L’ cos® B L' —L
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. That is,
L

v cos 6
1 c

L =

, so that the effect of retardation is the multiplication of the volume of a point
charge by a factor of
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The electric potential is thus

V(rt) =

dregre —T- U
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. The current density is pv.
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