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Efficient Method for Estimating Directions-
of-Arrival of Partially Polarized Signals
with Electromagnetic Vector Sensors

Kwok-Chiang Ho, Kah-Chye Tan, and B. T. G. Tan

Abstract—We have developed a high-resolution ESPRIT-based resolution methods, they do not involve searching across
method for estimating the directions-of-arrival of partially polar- 3 multidimensional array manifold. Moreover, the method

ized signals with electromagnetic vector sensors, each of which devised by Li [6] does not requira priori information about
provides measurements of the complete electric and magnetic o

fields induced by electromagnetic signals. The method is com- the array system such as the sensor posmons_.

putationally efficient since unlike many high-resolution methods, ~ 1he ESPRIT-based methods [6], [7] are designed for com-

it does not involve searching across a multidimensional array pletely polarized (CP) signals. The polarization state of such
manifold. In addition, the method has two variants, of which one g signal is constant, whereas that of a partially polarized (PP)
is applicable to scenarios wherea priori information about the o ynpolarized (UP) signal varies with time. However, in
array system, such as the sensor positions, is unavailable. some practical scenarios, PP or UP signals cannot be avoided.
For example, even with a well-designed vertical-polarization
I. INTRODUCTION Radar antenna, the signals radiated off the main beam axis

N THE RECENT literature, there have been several studigdll contain some varying amount of horizontally polarized

on direction-of-arrival (DOA) estimation with electromag-component [9]. As the transmitting Radar rotates itself to scan
netic (EM) vector sensors (VS's) that provide measuremer¥er the desired sector, the polarization of signals received
of the complete electric and magnetic fields induced by ERf an observation point varies with time. In addition, UP
signals [1]-[6]. Many advantages of using such VS's hawignals are sometimes deliberately generated. Indeed, one way
been identified. Indeed, Taet al. [2] (see also [3]-[5]) have Qf maximizing the use of allocated communication bandwidth

established that with just one VS, one can uniquely determil$et0 transmit (and receive) simultaneously two independent
the DOA’s of two uncorrelated EM signals in general of€SSages, each (_wahlch ut|I|_zes the entire band_W|dth a_llocated
three uncorrelated signals if they are skywaves. (One wolMih the use of &singleVS. This can be accomplished via ex-
need more than seven appropriately spaced scalar Senggjgyatmn of the two spatial degrees of freedqm available in a
where each provides measurements of only one componBafsverse EM wave [1]. Consequently, the signals transmitted
of electric field, to determine uniquely the DOA’s of thre¢@n even be UP. An efficient method for estimation of DOA’s
uncorrelated EM signals [8].) Via an explicit evaluation of th€f PP signals has been proposed by Li and Stoica [10]. The
Cramér—Rao bound, Nehorai and Paldi [1] demonstrated tH&€thod proposed in [10] has been designed for use with a
superior quality DOA estimates can be obtained with VS’é‘.n'erm linear array comprising cross ldlpoles (each of Wh'Ch
Therefore, DOA estimation systems employing VS's can kfgowdes measurgments of the electric but not thg magnetlc
expected to be not only compact but also able to yield go#§!d) and is applicable to cases where the incoming signals
performance. are known to lie in a 2-D plane containing the cross dipoles.
Although much has been achieved in establishing the per-!n this paper, we first study the applicability of Li's method
formance of EM VS's [1]-[5], the topic of DOA estimation[6] for estimation of the DOA’s of PP signals. Supsquently,
methods customized for such sensors seems to have recelygddevelop an ESPRIT-based method for estimating the
little attention. The studies carried out by Li [6] and byPOA’s of PP signals (with UP signals being the special case)
Wong and Zoltowski [7] are among the few. On developing‘?lt may arrive from anywhere in a 3-D space with EM VS's.
the methods proposed in [6] and [7], some specific rel®Ur method is pomputatlonally efﬂmen_t. In .ad.dl_tlon, it hfis two
tionships among the measurements of electric and magn@iants of which one does not requigepriori information
fields, known as Maxwell's equations, were exploited. Thabout the sensor positions. Some of our results have been

methods are computationally efficient since unlike many higﬁresented in [11], and here, we provide the detailed derivations
of our results.
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wherey (t) andn(t) are6m x 1 complex vectors, respectively, tz
given by
_ (D (1) L o(m) (m) (1T
Y(t) - [YG éiz;f,h (t)v 9 Ye, (t)v Yh (t)] incoming
€eC signal
n(t) = [n(8), 0 (#), -+, nf™ (), (@)
c q:GrnXl
e(¢k7 ?/)k) — [e—jwc‘rl,k7 e e—jwch,k]T c Crnxl (2)
[0 —u® uék)
(wex) 2 | o 0 —u
_—uék) ug;k) 0
rF) X
z CoS ¢y, cos Py,
u = uék) = |sin ¢y cos Py, 3) Fig. 1. DOA (¢, ¥) of an incoming signal.
u® sin ¥y,
V. = [;,1 r Var] sensor, the vecton,, is the unit vector pointing toward the
S . DOA of the kth signal, and the matrikuy, x ) effects a cross-
e P —cos Py sin gy 4 Product operation withy. The vectorsyy,; andvs . are unit
- C(())S P —sin dx sin g (4) vectors that span the same plane as the electric and magnetic
L cos P field vectors of thekth signal.
where The state of polarization of thieh signal can be determined
L (I x 1) identity matrix; based on the covariance of the vectq(t). Indeed, the signal
® Kronecker product operator; covariance matrixE[x (t)xi(¢)] can be expressed as (see
“T" transpose operator. Lemma 1 of [12])

Note thatxy (t) € €  for k =1, - -+, n, andy " (£), y{(#),
ngl)(t), ng)(t) ceC>fori=1,---, m.
It is worth mentioning the physical meaning associated 9 a9
. . . Where oy, 65 € R
with each of the above notations. For convenience, set up a
Cartesian coordinate system with the origin being co-located Qo) = cos o sin qy
with the reference sensor and each of the axes coinciding with ¥ 7\ —sin o, cos ap,
a component of the electric field (and a component of magnetic cos By
field) measurable with the VS’s. Theyg)(t) and—yg) )/n w(Ph) = <j sin /3k> 6)
are, respectively, the three-component measurements of the
electric and magnetic fields at tfith sensor at time, where Wheréax € (—/2, 7/2] and ), € [-w/4, w/4] are polar-
n is the intrinsic impedance of the medium, anﬁ)(t) and ization param.et(.ar.s commonly referred to as,}he orulen“tauon
0 . . . .angle and ellipticity angle, respectively, and’™ and “H
n,’(t) are, correspondingly, the noise components in the : ; .
! : . . fe, respectively, the expectation and Hermitian operators.
measurements. Physically, the orientations of the three electy|C’ .. . .
. L .Jhe first term of the right-hand side of (5) corresponds to
field components (and the magnetic field components) wi
X . e UP component, and the second term corresponds to CP
respect to each VS can be unambiguously determined. O ponent. with powera? ando2. respectively. The dearee
example, an EM VS can be constructed using three mutually e ' P k % resP y. g

perpendicular co-located short dipoles and three small IOO@)’polarization of the signal is defined as the ratio of the power
‘the CP component to the total power of the signal, i.e.,

The three dipoles of every VS of an array have their axes (62 + o2)
parallel to the three coordinate axes, and the three loops h3¥ (cfgn b((fak éasily verified that the signal covariance matrix
their normals being parallel to the coordinate axes (see [6114;[x (#)xH1(#)] as given by (5) is of rank 2 for the case of PP
Consequently, all VS’'s have exactly the same orientationh deP S’i‘ | . .

. . . . gnals (respectively, corresponding to nonzérand
Since each dipole is short, the output voltage from each dlp@g and nonzer@? but o2 of zero value) and is rank deficient
is proportional to the electric field component induced along®’ k k

i i ~2
the dipole axis. Moreover, since each loop is small, the outpurf the case of CP signals (corresponding to nonzgrbut 53

. . o zero value). Basically, a PP or UP signal exploits the two
voltage from each loop is proportional to the magnetic fiel ; . .
. Spatial degrees of freedom available in a transverse EM wave,
component induced along the normal of the loop.

The two entries of the vectat,(#) represent the complex whereas the CP signal utilizes only one. For convenience, the

envelopes of thekth transmitted signals. The symbal UP signal will be taken to be a special case of PP signal
denotes the frequency of the signals, € (-, «] and heIrEeEﬂc;etirc.)n (1) can be expressed in a more compact manner
Yy € [-7/2, 7 /2] are, respectively, the azimuth and elevatio\r}ia (rqnatrix representation P P

of the kth signal (see Fig. 1)g; 1 is the differential delay of P

the kth signal at thelth sensor with respect to the reference y(t) = As(t) + n(¢) (7

B! ()] = £ Ty + 2 Qan)w(B)wH () Q" (v
(5)
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where kth signal associated with, respectively, th@olarized, they
B polarized, and the polarized magnetic sensors. The matrices
A =l[e(dr, 1) @By, Y1), - e, Yin) D{"'s are diagonal and of dimension x n. In addition,

@ B(¢n, )] € C" ) the diagonal elements ab?, for k = 1, ---, 9, provide
s(t) =[x{ (1), -+, xp ()] € €} all the necessary information for determining uniquely the

and DOA'’s and polarizations of the signals. To estimibé”)’s,
B¢, 1) = Vi k V2,k ) ¢ oox2 ) Li [6] makes use of the eigenvectors of the array covariance

ko Tk Vo —Vik ' matrix E[y(t)y*(t)] (which are referred to aR hereafter).

Indeed, with the assumptions that conventional signal subspace

The set{B(¢x, x): dr € (=, 7], ¥ € [=7/2, 7/2]} IS \atnggs (such as ESPRIT [13]) would require, in particular
the array manifold of UP signals associated with a single Vﬁ1at

For CP signals, one can expregét) in another way to

avoid signal covariance matricégx; (¢)x#(¢)]'s that are rank Assumption 1:the signals are uncorrelated,

Assumption 2:the signals and noise are uncorrelated,;

deficient . . . L
Assumption 3:the noise covariance matrix is a constant
y(t) = APs®) () 4+ n(t) multiple of identity matrix;
where one can show that the matrices”) and E®), which com-
prises then signal eigenvectors (i.e., the eigenvectors of
AP =Te(¢1, 1) @ B¢, ¥1)Qla)w(By), -+ R associated with then largest eigenvalues), satisfy the
&(fns ) © B(¢n, 1n) Q) W(B)] relationship
€ Comxn (10) E® — A®T® (12)
and

hereT®) ¢ C**" is a unique nonsingular matrix. Now, let
(») _ . T nx1 w )

ST =ls1(); oo sn(B)]” € T E" be the(m x n) matrix that is extracted fronE® in the
In this case, the signal covarianggs;,(¢)st (¢)] is simply the same way as&}m is extracted fromA® for [ =1, .-, 6.
scalaro} as it appears in (5), which yields the power of th&@hen, it follows from (11) and (12) that

kth CP signal. E:(;)p) IEép)Agp)
ll. RELEVANT WORK CARRIED OUT BY LI EP + 5 EP = [EY + ¢, EP AP

It is beneficial to present a brief discussion of the method fork=2,---,5 (13)
proposed by Li [6] since the underlying concepts and con- Eé”) +bkE§p) :[Eép) +ckEg’)]A§f’)
siderations motivate the development of our new method. for k—6. ... O
The data model we adopt (see [1] for details) takes a form o
slightly different from Li's [6]. Our model is applicable to where
both CP signals and PP signals and thus provides the necessary ») -1 P mip)
framework for studying Li's method [6] for CP signals, as well A7 = [TV DT, (14)

as dgvelopmg a new method for PP S|.gnals. Fpr the case.r%fe estimation process would then begin with the computation
CP signals, the two models are essentially equivalent.

) (» —1. ... i
Now, we shall discuss the essence of Li's method [6] i(r)1f EY (and, thusE;™ for i =1, ---, 6). Itis next followed

) by determiningAEf’), fork=1,..-,9, based on (13). From

the light of our model. In fact, the relationships amoﬁﬁ’ , _ e _
for/ =1,---,6, whereAEp) is the (m x n) submatrix of (14), the eigenvalues ok;;’’s yield the diagonal elements of

A®) [as defined in (10)] consisting of theh, (6 + Dth, - -, fo "s. with the diagonal elements " for k=1, 9
[6(m — 1) + Jth rows of A®), which Li [6] has established, being determined, one can obtain the DOA’s and polarizations
are crucial of the Signals.
AP _ A@D® Remarks: 1) The fact that the measurements of various
3 T L components of the electric and magnetic fields induced by

AP 4 AP = [AD 4 AP DY EM waves are related by Maxwell's equations leads to the
fork=2---,5 (11) relationships specified by (11). It is Li's [6] discovery and her

) ®) A @) D)) clever exploitation of such relationships that enable application
A7+ A =[A57 + aAg”|Dy, of the ESPRIT algorithm without the need to explicitly employ
fork=6,---,9 “doublets” (see [13] for the necessity of using doublets on

whereby = by = bg = bs = ¢y = ¢3 = ¢ = ¢ = 1, and application of ESPRIT with scalar sensors).

by =bs = by = by = ¢4 = ¢5 = cg = cg = —1. Physically, 2) To obtain a unique estimate aﬁ_@ based on the first
the kth columns ofA;, A,, and A; are the steering vectorsequation of (13), it is required that the matiis” be of full
of the kth signal associated with, respectively, thpolarized, column rank. Similarly, to determine&gf) uniquely, based
the y polarized, and the: polarized electric sensors. Thgh on the kth equation, wherek = 2,.--, 9, it is required
columns of A4, Aj, and Ag are the steering vectors of thethat the column rank oI[Egp) + ckEg’)] be full. In this
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connection, the following assumption ensures the matrickem A for [ = 1, ---, 6. It, therefore, appears that with

Ag’) and[Egp)JrckEép)] are of full column rank (see Appendixan estimation procedure similar to that discussed in Section

A for the justifications): [, i.e., computingEy, - --, Eg, determiningAé“) using (17),
Assumption 4:i) The matrix [e(¢1, ¢1), - -, €(¢n; )], and then finding the eigenvalues Af™, one would be able

where e is as defined in (2), is of full column rank, andy, ghtain the DOA information hidden id{"“"s. However,

pp # Erf2 000 k=1, i) (an, B) #(E0/40) 5 carefyl analysis shows that the values Af* cannot

fork=1,---,n e determined uniquely from (17). To demonstrate this, we

The assumption imposes some constraints on th,e numﬁ%t establish a relevant lemma, of which the proof is quite
of sensors, the sensor configuration, and the DOA'’s of tl%?raightforward and. hence. not included here

S|gnztils. tAbtr|V|aI co?hstraTrt] is thaé thefnumber oflstlgnalts é_emma 1: The columns of the matrikuA + A;), where
must not be more than the number of sensors. Interested * "~ andk, [ € {1, ---, 6}, are linearly dependent.

aders a1k 1080 11 arlse o 1l ot s i r i s of S s, e can
g Y Cnsure that the matricej AL + vAP)], where k, 1 €

Asg)urzﬁﬂgzgﬁ. all the necessary DOA and polarization int1> <+, 6}, are of full column rank via an appropriate con-

. . - (p) _ straint on the DOA'’s of the signals, the sensor configuration,
fo_rm_anon are avaﬂgble 'r(F;l_ for i =1,.--, 6, they are . ihe yse of a sufficient number of sensors. However,
distributed over various;” in a somewhat complex Way| emma 1 states that for the case of PP signals, the matrices
and, therefore, cannot be easily extracted. However, a cIosFﬁiAk + vA;), wherek, I € {1,---, 6}, are always rank

form relationship among the diagonal element®t’ and the ~ geficient, regardless of the DOA’s of the signals, the number
DOA and polarization parameters are available, and this allows sensors, and sensor configuration.

determination of DOA’s and polarizations via an elegant and |t follows from Lemma 1 and (16) thaEs as well agEs +

systematic procedure proposed in [6]. cxEg), for k = 2, ..., 9, are rank deficient. Consequently,
there exist infinitely many sets a&é“)’s (with T—ngu)T
IV. AN INVESTIGATION ON APPLICABILITY OF being one candidate) that satisfy

Lrs METHOD TO PARTIALLY POLARIZED SIGNALS

_ (u)
. . . . E; =E¢A]
It is not straightforward to devise a strategy for applying (w) _
Li's method [6] to PP signals basically because the method 1 + txEa = (Es + o Ee)A; ", fork=2,..-,5
designed for CP signals. Nevertheless, we attempt this by fir®l, + b, E; = (E3 + ckEG)Aﬁj“), fork=6,---,9.
examining whether the set of relationships among the various (18)

measurements of electric and magnetic fields as specified tR/ ‘ . ibl . iquelv th ,
(112) are still valid for PP signals being model by (7). In thig— erefore, it is impossible to determine uniquely the DOA's.

connection, one can show that the same set of relationshjpé\though it turns out that the method proposed in [6] cannot
holds using the same strategy as that adopted in [6] be directly used for PP signals, the analysis carried 0L_Jt here is
useful for the development of a new method to be discussed

As =AD™ in the next section.
A; + Ay =(As+c,Ag)DY,  fork=2-.-.5

(u) V. OUR NEW METHOD FORPARTIALLY POLARIZED SIGNALS
As 4+ b As :(A3+CkA6)Dk , fork=6,---,9

(15) First, note that our method requires that all VS’s have

the same orientations. Moreover, it requires the following

where A, is the(m x 2n) submatrix ofA comprising theth, assumption in addition to Assumptions 1 to 3 and Condition
(6+0th, .-+, [6(m—1)+I]throws ofAfori =1, ---, 6,and i) of Assumption 4.

D" is a(2n x 2n) diagonal matrix whose diagonal elements Assumption 5:For k = 1,---,n, ¢y # in/2, where
contain DOA information. Moreover, it can be shown using = —1,0,1,2, and«; # 0.
the techniques proposed in [15] that Remark: The physical implication of Assumption 5 is that

the DOA’s of the signals should not lie in the—y, z—2,
E=AT (16)  and y—= planes. Hence, it appears that our method cannot be

whereT is a (2n x 2n) nonsingular matrix, and comprises used for scenarios where signals are known to be confined
the eigenvectors associated with thelargest eigenvalues of 0 the ground plane (i.e., the-y plane in our context), with

R. Consequently, (15) leads to which many studies reported in the literature are concerned.
, However, by reorientating the VS’s such that none of the three

E; IEGAgu) components of the electric field measurable with them lies

E; + byEy = (Es + ckEG)AE;“), fork=2,---,5 in the ground plane, our method becomes applicable to such

(u) scenarios.
E; + 0,E; :(Eg-i-ckE(;)Ak , fork=6,---,9

17 A. Estimation of Elevations

where AE;“) = T—1D§€“)T, and E; is the (m x 2n) matrix ~ As discussed in Section 1V, the fact thBx and (Es +
that is extracted fronE in the same way ad\; is extracted c¢;Eg), for £k = 2, ---, 9, are rank deficient prohibits unique
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determination ofAé“)’s from (18) and, thus, direct applicationSince the columns of-EZ, EZ]T are linearly independent
of Li's method [6]. This then motivates the derivation of othefpy Theorem 1 and (16)], the matriA(? satisfying
relationships among measurements of electric and magnetic

fields that are different from those of (18). Indeed, it can be E, —E, )
verified using (8) and (9) that <E) = < E4)A< ) (26)
<A1> = < A5>D(1) (19) must beT~*D@T. This implies tha” fori =1, -+, 2n,
Az —Ay which are the eigenvalues of the matax(?, constitute the
where diagonal elements ob(%).
W O O It follows from (24) thatn of the eigenvalues aA () corre-
DY =diag{d; *, ---, ds,, } spond totan ¢; and the other of them —1/tan ¢;. Unlike
L _ 1 the case of elevation estimation, there would be ambiguity
Z=1 " gin oy in estimating the azimuths. Indeed, one would not be able
d;) = sin ¥, fori=1,---,n. (20) to tell whether a given eigenvalue & (@ corresponds to
tan ¢; or —1/tan ¢; since the allowable values fann ¢;
Then, it follows from (16) and (19) that and —1/tan ¢; coincide exactly. Moreover, eadan~! d‘*
E, Es \ 1) yields two possible azimuth estimates with{p-r, 7]. In
<E2> = <_ )T DT. (21)  sections V-C and V-D, we shall address these ambiguity
issues.
We now state a crucial theorem.
Theorem 1: Under Condition i) of Assumption 4 and As- B ) ) )
sumption 5, the matrifA7, AT17, wherek # , is of full C. Pairing of Elevation and Azimuth Estimates
column rank. Since the elevation and azimuth estimates are obtained
Proof: See Appendix B. separately using the procedures discussed in Sections V-A
Then, by Theorem 1 and (16), the columngBf, —EZ]¥ and V-B, they have to be appropriately combined. This can
are linearly independent. Thus, the mat&) satisfying be done by determining the pairings of the eigenvalues of
E, s\ A AL 1and A(2)1 (i.e., th(; corresp;)ndence between each one
<E2> = <—E4>A 22) of d, ..., dY and d?, ..., d$2). For this purpose, the

procedure suggested by Li [6] is suitable. Indeed, we first
is unique and, hence, must B !DT. This implies that note that
the eigenvalues A1) constitute the diagonal elememﬁé)’s
of D& for 4 = 1, ..., 2n. Exploiting (20) and the fact [AO]TA® = T DV DT
that |sin ¢;| < 1 and |1/sin ¢;| > 1, one can take the

eigenvalues with absolute values not greater than 1 ttglﬁts where A®M and A® are as they appeared in (22) and (26),

fori=1,..-,n. Then, the elevationg;’s are given by respectively. First, denote the eigenvaluesafl)] -1 A by
¥ = sin_l[dgi)], fori=1, -, n. dgg) fori =1, ---, 2n. Then, it can be deduced thdf’) is

equal tod'® /d{*), wherek € {1, ---, 2n}, which is the ratio

B. Estimation of Azimuths of the ith eigenvalue ofA® to that of A(1). Moreover, for

3 2 1 3 1 2
Although (19) contains sufficient information for determin@ d?) that corresponds td{>) /d(", the Va|Ued§g Jatt) fd®
ing the elevations, there is no azimuth information since ttfdust be equal to 1. Therefore, we propose first to compute

matrix DX does not depend on azimuths. We have managét® valuesg, ; = |1 — di>d{" /di?| for k, 1 =1, -, 2n,
to identify one more equation of the desired form, with and then pairing:lgl) with the d§2), which gives rise to the
matrix D(?) containing azimuth information minimum amonggy, ¢, for k, 1 =1, -+, 2n.
A (A b® 03 Now, copl?id'er the pairblgi),'dg?] fo.ri =1, e Recall
As )~ 4 (23)  that eachd;,” yields an elevation estimatg; (uniquely), and
the azimuth¢; associated with it istan—l[—l/dg?]. Since
where 1 27 . :
tan~' [—1/ds;’] gives rise to two possible values, namely,
D® =diag{d?, ---, d*} or ¢; + 7, we obtainS;, which is a set of: possible groups
d? ¢ ‘ of DOA estimates
31 = tan ¢;

1 )
dgf) == tan d)i’ fori = 1’ IARXLe (24) Sl = {(¢17 1/)1)7 (d)l +7T, 1/)1)7 Ty (¢n7 z/}n)v (¢n +7T, z/}n)}

Then, it follows from (16) and (23) that

where (¢;, ;) and (¢; + 7, ¢;) form a group, and one of

them corresponds to the DOA of an incoming signal. Note
<E1> = <_E2)T—1D(2)T_ (25) that geometrically(¢; + 7, %;) corresponds to the reflection
E; E, of (¢, v;) about thez axis.
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D. Two Approaches to Tackling Ambiguity in DOA Estimatesensors and the-axis magnetic sensors, respectively. Such

We propose the following two approaches for determm".j&formation_WiII be exploited here to tackle the gmbiguity
which of the DOA’s inS are the true ones. In particular, weProblem. First, we recall one of the two possible DOA
are concerned with whethee;, ;) or (¢; + 7, ;) is the €stimates in the groupe:, i), (¢: +, ;) of Si, where
true DOA estimate. Note thde;, 1), but not(¢; + 7, 1;), ©= 1,---.n gorresponds t_o the DOA of an incoming signal,
is the DOA of theith signal according to our formulation and®"d (¢, %) is the reflection of(¢; + 7, ¢;) about thez
notations, and thus, it corresponds to the true DOA. Howev&Xis: For thg settlngs we adopted (se_e the relevant discussions
based on their computed numerical values, we will not knoffesented in Section 1), the axis is paraliel to one of
which one corresponds t@, ;) and which ond ¢+, ¢;), (N€ three components of electric field measurable with the

besides the fact that they are reflections of each other abdg s- Physically, the orientations of the three components
the » axis. with respect to each VS can be unambiguously determined. If

1) First Approach/Variant: Let Ey be the6m x (6m — 2n) we now adc_;pt another coordinate system such that taeis _
matrix whose columns are the eigenvectors associated with figcides with one of the other two components, we can obtain
(6m — 2n) smallest eigenvalues of the array covariance matrdhother set of DOA estimates (with the use of the procedure

R. [The (6m —2n) smallest eigenvalues are identical in theor§)"0P0Sed) of which the elevations and azimuths are defined
since the signal subspace foiPP signals i€ instead of]. with respect to that component. Similarly, we can obtain yet

Then. it can be shown that another set of DOA estimates by choosing thaxis to be
' " parallel to the third component of the electric field and then
le(¢:, ¥:) @ B(¢i, ¥i)]"Ex =0 carrying out a similar estimation procedure. Then, the false
for i = 1, -, n (refer to [15] for justifications). Thus, for DOA’s in S; may be eliminated by exploiting the fact that the

true ones must consistently exist in all three sets of DOA’s.
With the above observations in mind, we propose first car-
ing out a reparamaterization of the DOA and then applying
; the estimation procedures discussed in Sections V-A through
™ ¥i). Then, take(g, ¢;) to be the true DOA if V-C. Indeed, we reparameterize the DOQA v) by (§, ), as
|le(i, 1) @ B(gi, ¥i)]En|l2 shown in Fig. 2, where) € (-, «], and+) € [-x/2, 7/2].
< l[e(¢i + 7, i) @ B(dhi + 7, i) En Note that the parameters and ¢ are the “azimuth” and
“elevation” angles with respect to the new coordinate system
or (¢; +m, ;) otherwise, wherg| - ||> denotes the Frobeniusyyith axesy, 7, and:, which coincide with ther, y, andz axes,
norm. respectively, of the previous coordinate system. Without loss
Remarks: of generality, let¢;, 1;) denote the same DOA &8, v;) for
1) Although we have employed the concept of MUSIC (i.ej,= 1, - .., n. [The actual values 0@3“ 1/3i) may be different
the steering vector associated with a signal is orthogorfedm those of(¢;, 1;) although they correspond to the same
to the noise subspace) to remove ambiguous estima®®A physically since they are defined with respect to different

our method does not involve a search across the entygordinate systems.] Then, we show in Appendix C that (8)
array manifold as MUSIC requires. This is a cruciahnd (16) lead to the two equations

each group of DOA estimate§¢;, ¥;), (¢; + m, ;) }, we
may determine which one is the true DOA by first constructin
the matrice(¢;, 1) @B(i, ¢:) ande(p; +7, ;) @B(¢;+

2

consequence of carrying out the procedures mentioned E E X X X
in Sections V-A through V-C, which greatly reduces the <E3> = <—E4 ) (TT)"*D(TT) (27)
allowable values of the DOA'’s to those specified $y 1 6

2) Construction ofe(¢, 1) @ B(¢, ¥)'s requiresa priori  where
knowledge about the sensor array such as the sensor D :diag{cigl), . ngl)}
positions, and thus, the first variant cannot be used in . 1 "
situations where such knowledge is unavailable. dg;)_l =—

2) Second Approach/VariantTo avoid construction of 1) Slln z/fz

e(¢i, i) @ B(¢s, 1;), which requiresa priori knowledge dy;’ = sin ¥;, fori=1,.--,n

about the array, we adopt a strategy different from that gnd’i‘ is a nonsingula2n x 2n) matrix, and
the first variant. This is motivated by the fact that in somé 9 '

applications, sucla priori knowledge may not be available. E3s\ _ [(—Ei1\ am-1R3@)
For example, it may be difficult to determine the sensor <E4) B < E6>(TT) D) (28)
positions with desired accuracy in some scenarios due WRere
terrain and time constraints. However, this approach would “ () ] 2) 2)
require higher computational cost and would encounter some D' =diag{d;”, ---, d3; }
uniqueness problems as compared with the first approach. 62521)—1 = tan ¢;
These issues will be elaborated upon in Section V-E. o 1
Note that in obtaining the azimuth and elevation estimates in dé) == ton (/) ) fori=1,...,n.

Sections V-A and V-B, we did not make use of the matrices
E; and E¢ that contain some additional information abouBy Theorem 1 and (16), the matricd&?, —EZ]* and
the DOA’s, which were captured through theaxis electric [-E{, E{]? are both of full column rank. Thus, we can
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Fig. 2. Reparametrization of the DO@, v') by the parameter&p, ). _ o L
O ¥) Fig. 3. Reparametrization of the DO@, ') by the parametersp, ).

carry out the steps similar to those for estimatiag, 1:)'s  Geometrically,(¢; +, ;) is the reflection of¢;, 7/;) about

and obtain another sef, that containsn groups of DOA  the 4 axis.

estimates in terms of and v Now, we shall discuss the strategy for determining which

PN N N PN N N elements inS; correspond to true DOA'’s with the use of the

Sz = {(¢1, P1); (P14, Y1), -5 (Pns Pu)s (Pu+7T, )} DOA information available inS, and S5. Recall thatS; con-

sists ofn groups of DOA estimates, namelf®;, 1), (¢; +

7, )}, fori =1, ..., n, and for each group, there is one

) o estimate that corresponds to the DOA of an incoming signal.
Next, we reparameterize the DO, 1) by (¢, ©), 8 Tnerefore, it is a challenge to eliminate those that do not

shown in Fig. 3, and let¢;, ¢;) denote the same DOA asqqresnond to the DOA's of the incoming signals. Since the

(¢i, ¢i) for i = 1, ---, m. Carrying out the steps similar toy,e poA’s are contained in all three sefs, S,, and S,

those presented in Appendix C, we obtain one sensible approach is to examine whether each DOA in

matches one irt; and at the same time one &%.

Geometrically,(¢; +, ;) is the reflection of ¢;, 1;) about
the y axis.

<EQ) = <_g‘f)(’i‘T)_1]~)(l)’i‘T (29)  In practice, perfect matching cannot be expected due to
3 ° errors in estimating each of the elements S, S», and
where Ss. Therefore, we would need a matching procedure that
takes estimation error into considerations. To facilitate our
D® =diag{d", ---, dS") discussions, let us define two unit vectés, ) andii(¢, )
(1) 1 that point toward(¢, /) and (¢, ), respectively
dy_y =——= N ~
sin 1 o sin ¢ cos
CZ;) = sin 1, fori=1,.--,n u(g, ¢) = sin )
cos ¢ cos 1
and T is a nonsingula 2n x 2n) matrix, and and N
- sin vy
Ex\ _ (“Es)\ qem-152)5 (e, ) = | cos ¢ cos P |. (31)
<E6> N < E5>(TT) DHTT (30) sin ¢ cos v

[Recall thatu(¢p, ¢), as defined in (3), is the unit vector

where pointing toward(, 1).] Since(¢:, ¢:). (i, ¥:), and(d;, )
D@ :diag{cZ§2), . Jgi)} were defined to correspond to the same DQA¢p;, 1),
w2 - a(¢;, 1;), anda(e;, ¢;) must be the same vector.
dy;; = tan ¢; Now, we propose first computing the matching indexes
ng2) __ 1 _ fori=1, -, n. C(¢i, i) andC(¢p; +m, ;) fori =1, ---, n (which involve
! tan ¢; all the DOA’s in S;)
By Theorem 1 and (16), the matricdEl, —EZ]7 and Cli, i) = wglgigefﬂcos_l[“(% i) - W]

[-EZ, EZ]T are both of full column rank. Thus, with the

steps similar to those for estimatig;, «;)’s, we obtain yet

another setS3, which containsn groups of DOA estimates and

in terms of ¢ and ¢: Clgs +7, 1) = min _{|cos™ u(g; + =, ¥;) - W]|
wel', wel

S3 = {((7)17 Z/;1)7 ((;)1 +, z/;1)7 ) ((;)nv Z/;n)v ((;)n +, 1/371)} + |COS_1[u(¢i +, z/}z) : V~V]|}

+ [ cos™ [u(¢pi, 9i) - W[}
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wherel* and I’ are defined as 2) Incorrect classification takes place when Conditions
) L R R L iii)—v) are satisfied. Conditions iii)—v) correspond to
I' ={a(¢1, V1), W(¢1 + 7, 1), -+, U(Pn, ¥n) scenarios where there exist at least three incoming
ﬁ((/} +, ¢n)} (32) signals. Indeed, Condition iii)/iv) hold when there exists
= T - LT a signal whose DOA coincides with the reflection of
F={o Ed) (), Wgs ) (s ) the DOA of one other signal about thaxis, and at the
W(gn +, 1/’")} (33) same time the reflection of the DOA of another signal

about thez axisfy axis. On the other hand, Condition
v) holds when the reflection of the DOA of one signal
about thez axis coincides with the reflection of the
DOA of one other signal about thg axis and at the
same time coincides with the reflection of the DOA of
another signal about the axis.

Conditions iii)-v), which are of measure zero in the-
ory, would lead to incorrect classification. In practice,
however, measurement noise cannot be avoided, and
thus, incorrect classification is of nonzero measure.
Indeed, (¢; + 7, ;) may be wrongly classified as a
true DOA if it is close to any one of those satisfying
Conditions iii)—v) in the presence of noise. Nevertheless,
Lemma 2 is useful since it indicates that in general, the
probability of incorrect classification when near-perfect
measurements are available is reasonably low.

and “” is the dot product operator. The tefireos ™ [u(¢;, ;-

w|| yields the angular separation between the unit vectors
u(¢;, ;) andw, and the value is zero it(¢;, ¢;) andw

are equal and greater than zero if they are different. Clearly,
the matching indexC(¢;, ;) would equal zero in theory,
whereasC(¢; + w, ;) yields a relatively large value in )
general. Therefore, it is sensible to assume that the DOA
giving rise to a matching index of relatively lower value is
the true DOA.

With the matching procedure discussed above, an element in
51 of the form(¢; +, ;) will be classified as the true DOA if
u(p+m, ;) € 'nC. The question is whether such an element
in fact corresponds to the DOA of an incoming signal. In this
connection, the following lemma indicates that in theory, the
chance of an element ifi; that does not correspond to any
true DOA but is erroneously classified as one is very slim (the

proof of the lemma is quite straightforward and thus is n%t The set of DOA’s leading to incorrect classification, which
included here). as been discussed in Remark 2 of Lemma 2, can be further

Lemma 2: Given that the DOA sets{(¢1, v1), reduced with addi_tional different_ parametrizatior_l of DOA pa-
(</> )}, {(¢1 1/)1) (¢ z/} )} and JE((f)l 1/)1)7 rameters (o_r, equivalently, rqtano_n of the coordinate s_ystgm).
"’(d)" b cach contaim gélrv:/:se distinct DOA's that Here. we will not attempt to identify the best parametrization
are. rens’pegtlvely defined with respect to the first, seco Hcheme as it is a subject by itself. Instead, we shall illustrate
and third coordl,nate systems mentioned abog, 1) r{ k idea by presenting an example. Indeed, we first rotate the

original coordinate system by @/4 rotation along ther—y
(d)“ 1/%) and (i, 4) _correspond o the same DOA f plane followed by ar/4 rotation along the new—z plane (the
i =1 -0 andu, [, and[ are as defined in (3), (32), unit vectors along the, y, andy axes of the new coordinate
and (33) respectlvely Thea(p; + 7, ;) € NI, where system are respecnvelyQ, L 1/v2), (1/v2, —1/v/2, 0),

;};(};, .-+, n}, if and only if one of the following conditions and(— 7 - 1/\/—)) Repeating the steps similar to those of
' obtamlng 52 in Sections V-A through V-C, one will obtain
) = if; the fourth set of DOA estimates, sag,. Then, one may
2 identify the true DOA’s inS;’s as those that consistently
i) (i ¥i) = (dn + 7, Pr); exist in Sy, S,, Ss, and Sy;. With the use of four such
iy u(g; 4+, ) = ﬁ((;)’” z/}k) ((/} +, 1/31); different DOA parameterizations, the set of DOA’s leading

to incorrect classification will be smaller than that obtained
by using just the three different DOA parameterizations. In

u
V) u(g; + 7, ) = @by + 7, Pr) = @y, i)
)=

V) u(ei +m, ) = a(n + 7, ) = (e +m, Pr); particular, incorrect classification associated with Condition
v) of Lemma 2 is alleviated. Indeed, consider a scenario of
wherek, L € {1, .-+, n}, i # k k #1, andi # L. three incoming signals with DOA'6—7 /4, 0), (3x/4, 0), and
Remarks: (=37 /4, 0). Then, Condition v) of Lemma 2 is satisfied, and

1) Existence of a vectan(¢;+, ¢;) falling in 'nI" leads (7 /4, 0) will be wrongly classified as a true DOA with the
to (¢; +, ¢;) being accepted as a true DOA. Howeveluse of justS;, S», and Sz associated with the first three DOA
this does not necessarily imply incorrect classificatioparameterizations. However, incorrect classification does not
Indeed, Condition i) corresponds to scenarios whetgcur if we employS;, S», Sz, and S..
there exists an incoming signal with DOAy;, ;)
parallel to thez axis. This means that botty;, ¥;)
and (¢; + , 1;) correspond to the DOA of the sameE- The Complete DOA Estimation Procedures
signal. On the other hand, Condition ii) corresponds to Several key ideas behind our DOA estimation procedures
scenarios where there exist two incoming signals, orier PP signals and the relevant mathematical justifications have
of which is the DOA of the reflection of the other aboubeen presented separately in Sections V-A through V-D. It is
the z axis. Thus,(¢;, ;) and (¢; + 7, ¥;) each can beneficial to put those ideas together and present the complete
correspond to the DOA of such an incoming signal. estimation procedures, including those essential steps such as
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estimation of the dimension of signal subspace, which we haveThe Second Variant:

not addressed. Step 1: This step simply consists of Steps 1-7 of the first
The First Variant: variant.

Step 1: Compute the estimate of array covariance mB&rix ~ Step 2: Adopt another coordinate system and reparameter-
ize the DOA by (¢, ¢) in the way described in

N
R. = % Z y &)y (t) Section V-D2. Replace (34) with
E e E e A
where N is the number of snapshots. Then, <E37 ) = <—E47 )AS)
compute the eigenvalues; . > Az = -+ > _ Le 6,¢
Xém, e Of R, and the corresponding eigenvectors and (35) with
Vl,ej V2 e, V'Grn,e . ] E37€ _El e (2)

Step 2: Estimate the dimension of signal subspaag E,.) Es, . A
using the minimum-description-length-based pro- - _ _
cedure [16]. (Note that in theory, the number of and repeat Steps 4-7 of the flrs_t vana_nt. Then,
signals isng.) another set ofiq groups of DOA estimates in terms

Step 3: Form the signal subspdge = [v1. ., -+, Von,. c]- of (¢, ¢) will be obtained
Let E; . be the(m x 2ny4) submatrix ofE. con- So  —=1(d ) b o D
sisting of thelth, (6—|—l)th, <y [6(m — 1) + []th e =UPLe Pre) (PLe £ 90,
rows of E, for [ = 1, , 6. (g, er Yna,e)s (Pra,e T Png, )}

Step 4: Compute, using the total Ieast squares algorithmstep 3: Adopt yet another coordinate system and reparam-
[13], the matriceiAY and A? that satisfy eterize the DOA by(¢, ) in the way described in

. Section V-D2. Replace (34) with
2 e -E, . <E27€,):< EG,e)A(l)
E)=(E)ae w9 e/ Amee /0
5 4e and (35) with
. (1 (1) i i .

Step 5: Comput%je, (;l)Qn e ng)ch are thg)elgenval Ex.)\ _ (~Es. A®)

ues ofA¢”, andd;, .-+, dy,, . of Ac Eg . 5,
. (3) (3)

Step 6: Computdllje, : 2d2nd ¢» Which are the eigenval- and repeat Steps 4—7 of the first variant. Then, the
ues of[AY]-1A%), and then fori = 1, - - -, 2n,, third set ofng groups of DOA estimates in terms
compute the valuefl — df’)edglz/d@)| for k, | = of (¢, ¢) will be obtained

1 -~ -~ -~ ~
1, -, 2ng. Paird") with thedl 3 associated with S5 ={(P1.es P1e)s (P1,e + 7, P e),y -+
the m|n|mum of these values. ~ ~ ~ ~

Step 7: Choose ther; smallest eigenvalues oAV, (Pna,er Praye)s (Png e+ Png,e) -
and identify them a&léz?e fori = 1,--+, ng. Step 4: For each group of DOA estimates, ., #;..) and
In addition, identify the eigenvalue ofA‘® (¢i,e +m, Pie) IN Sy, wherei = 1, -+, ng,
associated withds;), (based on the pairing compute the matching indexes(¢;, ., ¢, .) and
relationship established via Step 6) ak. .. Cldi,e + i)

Estimate the elevation by; . = Re[sin™! d5;’.] Clgi, i) = we”mi\gef {lcos™ [u(¢i, ¥i) - W]

for: =1, ---, ng and the corresponding azimuth ol .

by ¢ . = Re{tan™![-1 /dgf)e]}, where Ref) +|CO.S [l z/;i)l-w]|}

denotes the real part of. A set of ny groups of Clgi+m, vi) = min _{(|cos™ [u(¢; + 7, )

DOA estimates can then be obtained welewele )

St = (b1 e, P o) (bre -7, 1), e W]+ [cosT [u(ei + 7, ) - W[}
(d)nd:e? z/}ndye)7 (d)nd:e +7T, z/}ndye)}' Where

Step 8: Form the noise SubspaBg . = [Von,41.e, Do = {01 e, 1. e), Wby, e +7, Y1), -

Vem,e|. For each group of DOA estimates A(A e 1/3% ) A((;)nd,e g 1/3nd )

(di e, z/;z e) and (¢; « + m, ¥;. ) in S1 ., Where
i=1,-, ng, take(d;, ., i o) as a true DOA if and

lle(pi, es Vi, e) @ B(di,er i, )] Enell2
S ||[e(¢i,e + Ur wi,e) @ B(¢i,e + U wi,e)]H

En |2

L. :{ﬁ(g)i,ev 1/;1,5%)7 ﬁ((z)l,e:i‘ Ur Z/;1,6)1' .
ﬁ(¢nd,ev wnd,e)v ﬁ(¢nd,e + 7, Z/}naz,e)}'

Take (¢ e, %) as a valid DOA estimate if

C(¢i,€7 wi,e) S C(¢i,e + U r‘/}i,e)r or take
or take(¢;, .+, 1 ) as a true DOA otherwise. (¢i, e + , i, ) Otherwise.
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— — — Our Method (PP)
)
a Our Method (UP)
5}
= MUSIC (PP
e N 2 EREEEE (PP)
wn
5 - --—CRB
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Fig. 4. RMSE of the elevation estimate, and the CRB, of one signal impinging on one vector sensor. The azimuth of the signal is fixedndt 45

the elevationy; varies from—90° to 90°. The words “PP” and “UP” in the legend in the figure indicate that the curve corresponds to, respectively,
scenario with a PP signal and that with a UP signal. (The CRB’s are identical for the two different scenarios, whereas the RMSE of MUSIC for a UP
signal coincides with that of the CRB and, thus, is not shown here.)

Remark: The strength of the second variant of our methoshows the root-mean-square errors (RMSE'’s) of the elevation
is that it does not requira priori knowledge about the array estimates obtained with our method for the scenarios where
configurations, but it will lead to incorrect classification fothere exists a UP signal as well as those for the PP signal.
scenarios where the DOA'’s of the signals satisfy Conditios also shows the estimates obtained with MUSIC for the
iif)—v). On the other hand, the first variant is computationallgcenarios where there exists a PP signal and the CRB. (The
more efficient than the second variant (the computation ca@®RB’s for the two scenarios are identical, and the RMSE of
of Steps 2-4 of the latter is clearly much higher than tha1USIC for a UP signal is very close to the CRB and is, thus,
of Step 8 of the former) and does not have the ambiguifot shown.)
problem. However, it requires the information about the array It is shown in Fig. 4 that for elevation ranging fros60° to
configurations. 60°, the RMSE'’s of our method remained below &d were

slightly larger than those of MUSIC. Although the RMSE of
VI. SIMULATION RESULTS our method rose to about® Avhen elevation wast90°, it

We shall now present some numerical examples to demdi’\i“_ not.result in serious setback in some appligations such as
strate the effectiveness of the method we proposed. Altogetrzftimation of the DOA's of skywaves, where signals of high
two experiments were conducted. In each of the experimerfi€vation are of less concern. Indeed, skywaves are often ex-
we generated 500 Monte Carlo runs, and for each run, 10®ited for long distance communications, and high elevation
snapshots were generated. The signal-to-noise ratio (SNiywaves often correspond to relatively nearby transmitting
is defined as the ratio of the incident signal power to tH&UrCes.
noise power received at each VS and is equal to 1Qylog Although the accuracy of the estimates obtained by our
(O—i2 +OA—22)/0—72” Whereo—i2 and 6—3 are, respective|y, the powersmethOd is poorer than that by MUSIC, our method is com-
of the CP and UP components of thiéh signal, ando? is putationally more efficient as it does not require searching
the noise power. The SNR’s of each signals were fixed at 8ross the entire array manifold. Moreover, one variant of
dB. We compared the performance of our proposed estima@t” method does not requir@ priori knowledge about the
with MUSIC [15] and with the Cra@r—Rao bound (CRB) Sensor positions. In this connection, it is worth mentioning that
given by [1, Eq. (3.4)]. MUSIC basically searches for théhe performance of MUSIC depends greatly on the accuracy
“steering matrices” in the array manifold of UP signals, i.eQf the array manifold, which in turn is dependent on the
{e(¢, ¥) @ B¢, ¥)|¢ € (=, 7], v € [-n/2, 7/2]}, that accuracy of the sensor positions. If the sensor positions are not
intersect the noise subspace and then computes the DOK®Wn precisely, the DOA estimates of MUSIC could degrade
accordingly. A step size of 0?1was used to perform the significantly. In cases where high-accuracy DOA estimates
search. are required and the sensor positions are known to desired

In the first experiment, we simulated one signal impingingccuracy, our method can be used to provide initial estimates.
on one VS. The azimuth of the signal was fixed at,4&nd Then, more accurate estimates can be obtained with MUSIC
the elevation was varied from-90° to 9C° in steps of 8. via performing a search across only those regions of the array
We consider two scenarios with, respectively, a UP signal anthnifold that are close to the steering matrices associated with
a PP signal with polarization parameters = 3, = 0° and the initial estimates. This approach will lead to considerable
o? = 6% = 0.5 (the degree of polarization is 0.5). Fig. 4reduction in computational cost.
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3.

— — — Our Method (1 PP + 1 UP)
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------ MUSIC ((1 PP + 1 UP)

— - — - MUSIC (2 UP's)

RMSE (degree)
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Fig. 5. RMSE of the elevation estimate of the second signal for scenarios of two signals impinging on an array of four vector sensors with cogrdinates (0
0, 0), (1, 0, ON, (0, 1, ON, (1, 1, ON. The azimuths of the two signals are fixed af 4the elevation of the first signal is fixed at4%nd the secondif;)

varies from 0 to 45°. The words “1 PR+ 1 UP” and “2 UP’s” in the legend in the figure indicate that the curve corresponds to, respectively, the scenario
where there exists a UP signal and a PP signal and that where there exist two UP signals. (The CRB’s are identical for the two different scenarios.)

Note that from Fig. 4, we can see that the RMSE'’s of ouhe elements of; are the true DOA's, and for the experiments
method, as well as for MUSIC, for the PP signal were largeonducted, both variants have led to the correct choice of true
than those for UP signal. This is due to the fact that ol?OA’s.
method, and MUSIC by the way we apply it (see the first
paragraph of this section), exploits only the UP component
of the PP signal for DOA estimation. Further experiments
(which are not shown here) indicate that when the degree ofWe first examined the possibility of applying Li's method
polarization is about 0.9, the DOA estimate of our methdd] to partially polarized signals. Indeed, we began by study-
becomes quite poor. Note that our method will not be ableg whether the relationships among the measurements of
to estimate the DOA’s of a CP signal, and, in contrast, tredectric and magnetic fields obtainable with vector sensors
method proposed by Li [6] requires all the signals to be CRthat Li [6] had established are also valid for partially po-

In the second experiment, we simulated two uncorrelatédfized signals. Although the same relationships hold, we
signals impinging on an array of four VS's. The sensd¥iscovered that the information they contain is not sufficient
coordinates were (0, 0, 0), (1, 0,500, 1 ,0%, and (1, 1, O), for determining uniquely the DOA's for partially polarized
where A denotes the wavelength of the signals. We considgéignals. Subsequently, we derived a new set of relationships
two different scenarios: one where both the signals are UP a#ftfl an appropriate estimation method with two variants. Our
the other where one of the signals is UP and the other PP. agthod is computationally efficient, and one of the variants
both scenarios, the DOA of the first signal was, v1) = does not requira prigri information abo_ut the.array system
(45°, 45°), and the second signal Wégs, 1) = (45°, 4,), such as sensor positions. Moreover, s'lmulatlon results have
where the value ofi, was varied from 0 to 35in steps of 5. demonstrated that our method is effective.

Moreover, for the second scenario, the first signal is UP, andVhile Li's method [6] works well with only completely

the second signal is PP with parametgss, 3) = (90°, 0°) polar!zed ;lgnals, our methoq is apphcable to only partially
ando? = 42 = 0.5 (the degree of polarization is 0.5). Fig. 5po|ar|;ed §|gnals. Therefore, it remains a challenge to develo.p
shows the RMSE’s of the elevation estimates of the secofl €stimation method that possesses the strengths of both Li's
signal obtained with our method, as well as those with MusIE&nd Of our method for scenarios where completely polarized
and the CRB for the scenarios where there exist two UP signgignals and partially polarized signals co-exist.

and those where there exist one UP signal and one PP signal.
(The CRB’s for the two scenarios are identical.) It is apparent
that the RMSE of our method was only slightly larger than

those of MUSIC for the range of elevation from 0 to°3Gor ) _ .
elevation betweenOto 20°, our method was at most 065 We shall establish that Assumption 4 ensures the matrices

poorer than the CRB. EY and [EY + ,EY)] are of full column rank. First, let
Note that both variants of our method have led to the sarfie= [e(1, 1), - -+, €(¢n, ¥)]. From (12), we have

results shown in Figs. 4 and 5. Indeed, the difference between

the two variants lies in the approach to determining which of  EY) + ,E® = [AP + AP |T® = QFT®)

VIl. CONCLUSION

APPENDIX A
THE IMPLICATION OF ASSUMPTION 4
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where ¥ = diag{f1, ---, fx}, and f; = (—sinw; cosf; Clearly, if (36) holds, there; and ¢, satisfying the above

+ jcososin ) cosy; 4+ e(cos o cos 3;  +  equation must be O for = 1, ---, n, and hence, the matrix

J sin ; sin 3;) cos ¢;. Under Assumption 4, we have[Ni, N7]% is of full column rank. With this, we establish that
¥ # £90° and (o, 8;) # (£n/4,0) for ¢ = 1, ..., n, under Condition i) of Assumption 4, the matfiA?’, AT]" is
implying that f; is nonzero fori = 1, ---, n. Consequently, of full column rank if (36) holds.

F is of full column rank. Moreover£2 is of full column Now, we shall show that under Assumption 5, (36) holds.
rank under Assumption 4, an@(®, as it is defined [see To see this, we assume the contrary that Assumption 5 holds
(12)], is also of full column rank. These facts imply thabut that (36) is invalid. This implies that there existand!,

[EL + EP)] is of full column rank. Using similar strategy, where & # I, such that

we can show thaEép) is of full column rank. b
det [bk((:;))“ ://j”))} =0, forsomeic {1, --,n}.
APPENDIX B APiy

PROOF OF THEOREM 1 . o
OoF 0 ° Note that there are altogeth€f = 30 possible combinations

We first show that under Condition i) of Assumption 4, thef ; and I, wherek, I € {1, ---, 6}, andk # I. Now, let
matrix [AF, AT]T, wherek # 1, is of full column rank if us denotedet [bY (¢;, :), bY ¢y, ¥:)]T as Dy, 1. Clearly,
i (s, i) . if Dy1;=0,thenD;; = —Dy 1, = 0. Thus, we may
det [bz(@‘ 1/}‘)} #0, fori=1,---,n  (36) consider just 15 possible combinations kfand I, where
. k,l € {1,---,6}, andk < l. In this connection, it can be
whereby (¢;, 1;) € C*? denotes théth row of the6x 2 ma- verified that

trix B(¢;, v:). Indeed, the matrife(¢1, ¢1), - -+, e(Pn, )]
is of full column rank under Condition i) of Assumption 4, an

this implies that there exists a nonsingulat x m) matrix M Dy 3 =Dy 6= —sin ¢; cos ¢; =0
such that if and only if ¢, =0, m or ¢, = ig
I
Mle(¢1, ¥1), -+, e(Pn, ¥n)] = {0( )X } (37) Dy 4, =(-1+ cos® i cos? i) =0
if and only if ¢; = 0, # and; =0
Dy 5.6 =Ds 4 ; = sin ¢; cos ¢; cos? 1; =0
. . mw mw mw
ifandonly if p; = ——, 0, —, w or+p; = =—
y ¢ 27 ? 27 m z/} 2
D1.6,i = D3, 4,i = cos ¢; sin 9; cos pp; =0

d D1,2,i ID4757Z‘ = sin 1/)Z =0 if and onIy if 1/)Z =0

Since Ay, = [e(¢1, P1)br(P1, 1), -+ -5 €(Pny V) or(Pns
Pp)] for k=1, ---, 6, we can express it as

Ak = [e(¢17 ?/)1)7 M e(¢n7 z/}n)]Nk (38)

where we have (38a), shown at the bottom of the page.

. . w w
It then follows from (37) and (38) that if and only if ¢; = 15 or 1, =0, i?
< M 0m><m> <Ak> _ <Nk> Dy 3 =Ds¢;=cos ¢ costp; =0
Omxm M A N if and only if ¢; = ig or ; = ig
SinceM is nonsingular, the ranks of the fnatric{gs{, AT Do s i =(=1+sin® ¢; cos® 1) = 0
and [N¥ NT|T are the same. Thus, it suffices to show =" _ _ n
that the matrix[N¥, N71¥ is of full column rank if (36) if and only if ¢; = £ and; =0
holds, or equivalently, the null space @Y}, N/]" contains  ,  _p  _ o $: sin ¥ ios Wi =0
only the zero vector if (36) holds. To see this, let= % 6.0 85,0 ! ! ¢ .
[c1, 2, -+, con]” be a vector inC*"*! such that if and only if ¢; = 0, 7 or +/; = 0, i§
N e —co2 =0 if o, — + 2
<N’; )C = Oyl (39) D36 cos” #; = 0 if and only if +; 12.
We shall show that; = 0 for i = 1, ---, 2n. From theith Therefore, the value aby, ¢ i, wherel, k=1, ---, 6, equals

row and the(n +4)th row of (39), fori = 1, - -, n, we obtain 0 only if ¢; = pm/2, wherep € {-1, 0, 1, 2 or ¢); = 0.
This contradicts our hypothesis that Assumption 5 holds. In
|:bk(¢i7 1/%‘)} [ ¢ } - {0} fori=1,---, n. conclusion, the matriYA¥, AT]T is of full column rank if

bi(Pis i) | [enpi 0 both Assumption 5 and Condition i) of Assumption 4 haid.
by(¢1, 11) O1x2 012
O1x2 by(p2, 2) Oix2 -+ 012

N = : 012 : e Ccrrn, (38a)

0152 0152 br(¢n, Pn)
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APPENDIX C
DERIVATION OF (27) AND (28)

Recall that in the first coordinate systemw, ; and v j
are two orthogonal vectors that span the same plane
the electric and magnetic field vectors of th¢h signal.
Now, let us denote, for the new coordinate systeim,;
and v, ; as the corresponding two orthogonal vectors that
span the same plane as the electric and magnetic field vec-
tors of thekth signal. [Note that, in terms 0<f>k and z/3k
¥1. and V4,5 can be expressed asof ¢p 0 —sin ¢y)
and ( sin ¢y sin ¢ cos P —cos ¢ sin 9x), respectively.]
Thus, geometrically, the vectoss x, va i, V1, %, andv, ; all
lie on the same plane, and, ; (or v ;) is the rotation of
the vectorv; ; (or vq ;) via angIeSk € (—m, w] in the plane
containingv,_ ; andvy ;. Thus, the vectors are related as

(1]
(2]

(3]

(Vi Vo) =(Vik V2,)Q(8) (40) 4
where Q is the rotation matrix as defined in (6). Then, it s
follows from (9) and (40) that we can express the matrix[]
B(¢r, ¢1) in terms of ¢, and ¢y, as

(6]

Ve Vo 2
B(¢w, i) =1 . Lo Ok )- 41

G = (34 e @y

Now, let us denote -
Q(41) 0252 0252

R 022 Q(¢2) 022 [9]

T=1 . : [10]
O2x2  O2x2 Q(6n)

(11]
where02 - denotes theX x 2) zero matrix. Then, it can be
verified using (8) and (41) that [12]

Az \ao1 _ { Ad\poinc
<A1>T _<_A6>T DV 42) 3
where [14]
]5(1) = dlag{dgl)v T CZ;L)}
[15]
O —
2¢—1 in "(/)Z
ds;’ = sin 1;, fori=1,---,n.
Moreover
Aj -1 -A T—11H(2)
<A4>T _< A6>T D (43)
where

]5(2) :dlag{d?)v T ngi)}

czgf)_l = tan (73Z
5 1
dg):——A, fori=1,.--,n.
tan ¢;
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