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Efficient Method for Estimating Directions-
of-Arrival of Partially Polarized Signals

with Electromagnetic Vector Sensors
Kwok-Chiang Ho, Kah-Chye Tan, and B. T. G. Tan

Abstract—We have developed a high-resolution ESPRIT-based
method for estimating the directions-of-arrival of partially polar-
ized signals with electromagnetic vector sensors, each of which
provides measurements of the complete electric and magnetic
fields induced by electromagnetic signals. The method is com-
putationally efficient since unlike many high-resolution methods,
it does not involve searching across a multidimensional array
manifold. In addition, the method has two variants, of which one
is applicable to scenarios wherea priori information about the
array system, such as the sensor positions, is unavailable.

I. INTRODUCTION

I N THE RECENT literature, there have been several studies
on direction-of-arrival (DOA) estimation with electromag-

netic (EM) vector sensors (VS’s) that provide measurements
of the complete electric and magnetic fields induced by EM
signals [1]–[6]. Many advantages of using such VS’s have
been identified. Indeed, Tanet al. [2] (see also [3]–[5]) have
established that with just one VS, one can uniquely determine
the DOA’s of two uncorrelated EM signals in general or
three uncorrelated signals if they are skywaves. (One would
need more than seven appropriately spaced scalar sensors,
where each provides measurements of only one component
of electric field, to determine uniquely the DOA’s of three
uncorrelated EM signals [8].) Via an explicit evaluation of the
Craḿer–Rao bound, Nehorai and Paldi [1] demonstrated that
superior quality DOA estimates can be obtained with VS’s.
Therefore, DOA estimation systems employing VS’s can be
expected to be not only compact but also able to yield good
performance.

Although much has been achieved in establishing the per-
formance of EM VS’s [1]–[5], the topic of DOA estimation
methods customized for such sensors seems to have received
little attention. The studies carried out by Li [6] and by
Wong and Zoltowski [7] are among the few. On developing
the methods proposed in [6] and [7], some specific rela-
tionships among the measurements of electric and magnetic
fields, known as Maxwell’s equations, were exploited. The
methods are computationally efficient since unlike many high-
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resolution methods, they do not involve searching across
a multidimensional array manifold. Moreover, the method
devised by Li [6] does not requirea priori information about
the array system such as the sensor positions.

The ESPRIT-based methods [6], [7] are designed for com-
pletely polarized (CP) signals. The polarization state of such
a signal is constant, whereas that of a partially polarized (PP)
or unpolarized (UP) signal varies with time. However, in
some practical scenarios, PP or UP signals cannot be avoided.
For example, even with a well-designed vertical-polarization
Radar antenna, the signals radiated off the main beam axis
will contain some varying amount of horizontally polarized
component [9]. As the transmitting Radar rotates itself to scan
over the desired sector, the polarization of signals received
at an observation point varies with time. In addition, UP
signals are sometimes deliberately generated. Indeed, one way
of maximizing the use of allocated communication bandwidth
is to transmit (and receive) simultaneously two independent
messages, each of which utilizes the entire bandwidth allocated
with the use of asingleVS. This can be accomplished via ex-
ploitation of the two spatial degrees of freedom available in a
transverse EM wave [1]. Consequently, the signals transmitted
can even be UP. An efficient method for estimation of DOA’s
of PP signals has been proposed by Li and Stoica [10]. The
method proposed in [10] has been designed for use with a
uniform linear array comprising cross dipoles (each of which
provides measurements of the electric but not the magnetic
field) and is applicable to cases where the incoming signals
are known to lie in a 2-D plane containing the cross dipoles.

In this paper, we first study the applicability of Li’s method
[6] for estimation of the DOA’s of PP signals. Subsequently,
we develop an ESPRIT-based method for estimating the
DOA’s of PP signals (with UP signals being the special case)
that may arrive from anywhere in a 3-D space with EM VS’s.
Our method is computationally efficient. In addition, it has two
variants of which one does not requirea priori information
about the sensor positions. Some of our results have been
presented in [11], and here, we provide the detailed derivations
of our results.

II. DATA MODEL

We shall adopt the data model proposed by Nehorai and
Paldi [1] for an array of EM VS’s receiving signals

(1)
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where and are complex vectors, respectively,
given by

C

C

C (2)

(3)

(4)

where

identity matrix;
Kronecker product operator;

“ ” transpose operator.

Note that C for , and , ,
, C for .

It is worth mentioning the physical meaning associated
with each of the above notations. For convenience, set up a
Cartesian coordinate system with the origin being co-located
with the reference sensor and each of the axes coinciding with
a component of the electric field (and a component of magnetic
field) measurable with the VS’s. Then, and
are, respectively, the three-component measurements of the
electric and magnetic fields at theth sensor at time, where

is the intrinsic impedance of the medium, and and
are, correspondingly, the noise components in the

measurements. Physically, the orientations of the three electric
field components (and the magnetic field components) with
respect to each VS can be unambiguously determined. For
example, an EM VS can be constructed using three mutually
perpendicular co-located short dipoles and three small loops.
The three dipoles of every VS of an array have their axes
parallel to the three coordinate axes, and the three loops have
their normals being parallel to the coordinate axes (see [6]).
Consequently, all VS’s have exactly the same orientation.
Since each dipole is short, the output voltage from each dipole
is proportional to the electric field component induced along
the dipole axis. Moreover, since each loop is small, the output
voltage from each loop is proportional to the magnetic field
component induced along the normal of the loop.

The two entries of the vector represent the complex
envelopes of the th transmitted signals. The symbol
denotes the frequency of the signals, and

are, respectively, the azimuth and elevation
of the th signal (see Fig. 1), is the differential delay of
the th signal at the th sensor with respect to the reference

Fig. 1. DOA (�;  ) of an incoming signal.

sensor, the vector is the unit vector pointing toward the
DOA of the th signal, and the matrix effects a cross-
product operation with . The vectors and are unit
vectors that span the same plane as the electric and magnetic
field vectors of the th signal.

The state of polarization of theth signal can be determined
based on the covariance of the vector . Indeed, the signal
covariance matrix can be expressed as (see
Lemma 1 of [12])

(5)
where

(6)

where and are polar-
ization parameters commonly referred to as the orientation
angle and ellipticity angle, respectively, and “” and “ ”
are, respectively, the expectation and Hermitian operators.
The first term of the right-hand side of (5) corresponds to
the UP component, and the second term corresponds to CP
component, with powers and , respectively. The degree
of polarization of the signal is defined as the ratio of the power
of the CP component to the total power of the signal, i.e.,

.
It can be easily verified that the signal covariance matrix

as given by (5) is of rank 2 for the case of PP
and UP signals (respectively, corresponding to nonzeroand

, and nonzero but of zero value) and is rank deficient
for the case of CP signals (corresponding to nonzerobut
of zero value). Basically, a PP or UP signal exploits the two
spatial degrees of freedom available in a transverse EM wave,
whereas the CP signal utilizes only one. For convenience, the
UP signal will be taken to be a special case of PP signal
hereafter.

Equation (1) can be expressed in a more compact manner
via matrix representation

(7)
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where

C (8)

C

and

C (9)

The set is
the array manifold of UP signals associated with a single VS.

For CP signals, one can express in another way to
avoid signal covariance matrices ’s that are rank
deficient

where

C (10)

and

C

In this case, the signal covariance is simply the
scalar as it appears in (5), which yields the power of the

th CP signal.

III. RELEVANT WORK CARRIED OUT BY LI

It is beneficial to present a brief discussion of the method
proposed by Li [6] since the underlying concepts and con-
siderations motivate the development of our new method.
The data model we adopt (see [1] for details) takes a form
slightly different from Li’s [6]. Our model is applicable to
both CP signals and PP signals and thus provides the necessary
framework for studying Li’s method [6] for CP signals, as well
as developing a new method for PP signals. For the case of
CP signals, the two models are essentially equivalent.

Now, we shall discuss the essence of Li’s method [6] in
the light of our model. In fact, the relationships among ,
for , where is the submatrix of

[as defined in (10)] consisting of theth, th, ,
th rows of , which Li [6] has established,

are crucial

for

for

(11)

where , and
. Physically,

the th columns of , , and are the steering vectors
of the th signal associated with, respectively, thepolarized,
the polarized, and the polarized electric sensors. Theth
columns of , , and are the steering vectors of the

th signal associated with, respectively, thepolarized, the
polarized, and the polarized magnetic sensors. The matrices

’s are diagonal and of dimension . In addition,
the diagonal elements of , for , provide
all the necessary information for determining uniquely the
DOA’s and polarizations of the signals. To estimate ’s,
Li [6] makes use of the eigenvectors of the array covariance
matrix (which are referred to as hereafter).
Indeed, with the assumptions that conventional signal subspace
methods (such as ESPRIT [13]) would require, in particular
that

Assumption 1:the signals are uncorrelated;
Assumption 2:the signals and noise are uncorrelated;
Assumption 3:the noise covariance matrix is a constant

multiple of identity matrix;

one can show that the matrices and , which com-
prises the signal eigenvectors (i.e., the eigenvectors of

associated with the largest eigenvalues), satisfy the
relationship

(12)

where C is a unique nonsingular matrix. Now, let
be the matrix that is extracted from in the

same way as is extracted from for .
Then, it follows from (11) and (12) that

for

for

(13)

where

(14)

The estimation process would then begin with the computation
of (and, thus, for ). It is next followed
by determining , for , based on (13). From
(14), the eigenvalues of ’s yield the diagonal elements of

’s. With the diagonal elements of for
being determined, one can obtain the DOA’s and polarizations
of the signals.

Remarks: 1) The fact that the measurements of various
components of the electric and magnetic fields induced by
EM waves are related by Maxwell’s equations leads to the
relationships specified by (11). It is Li’s [6] discovery and her
clever exploitation of such relationships that enable application
of the ESPRIT algorithm without the need to explicitly employ
“doublets” (see [13] for the necessity of using doublets on
application of ESPRIT with scalar sensors).

2) To obtain a unique estimate of based on the first
equation of (13), it is required that the matrix be of full
column rank. Similarly, to determine uniquely, based
on the th equation, where , it is required
that the column rank of be full. In this
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connection, the following assumption ensures the matrices
and are of full column rank (see Appendix

A for the justifications):
Assumption 4:i) The matrix ,

where is as defined in (2), is of full column rank, and
for ; ii)

for .
The assumption imposes some constraints on the number

of sensors, the sensor configuration, and the DOA’s of the
signals. A trivial constraint is that the number of signals
must not be more than the number of sensors. Interested
readers may refer to [8] and [14] for analyses of the effect
of sensor number/configuration and DOA’s on the validity of
Assumption 4.

3) Although all the necessary DOA and polarization in-
formation are available in for , they are
distributed over various in a somewhat complex way
and, therefore, cannot be easily extracted. However, a closed-
form relationship among the diagonal elements of and the
DOA and polarization parameters are available, and this allows
determination of DOA’s and polarizations via an elegant and
systematic procedure proposed in [6].

IV. A N INVESTIGATION ON APPLICABILITY OF

LI’S METHOD TO PARTIALLY POLARIZED SIGNALS

It is not straightforward to devise a strategy for applying
Li’s method [6] to PP signals basically because the method is
designed for CP signals. Nevertheless, we attempt this by first
examining whether the set of relationships among the various
measurements of electric and magnetic fields as specified by
(11) are still valid for PP signals being model by (7). In this
connection, one can show that the same set of relationships
holds using the same strategy as that adopted in [6]

for

for
(15)

where is the submatrix of comprising the th,
th, , th rows of for , and

is a diagonal matrix whose diagonal elements
contain DOA information. Moreover, it can be shown using
the techniques proposed in [15] that

(16)

where is a nonsingular matrix, and comprises
the eigenvectors associated with thelargest eigenvalues of

. Consequently, (15) leads to

for

for
(17)

where , and is the matrix
that is extracted from in the same way as is extracted

from for . It, therefore, appears that with
an estimation procedure similar to that discussed in Section
III, i.e., computing , determining using (17),
and then finding the eigenvalues of , one would be able
to obtain the DOA information hidden in ’s. However,
a careful analysis shows that the values of cannot
be determined uniquely from (17). To demonstrate this, we
first establish a relevant lemma, of which the proof is quite
straightforward and, hence, not included here.

Lemma 1: The columns of the matrix , where
C and , are linearly dependent.

Remark: Note that for the case of CP signals, one can
ensure that the matrices , where

, are of full column rank via an appropriate con-
straint on the DOA’s of the signals, the sensor configuration,
and the use of a sufficient number of sensors. However,
Lemma 1 states that for the case of PP signals, the matrices

, where , are always rank
deficient, regardless of the DOA’s of the signals, the number
of sensors, and sensor configuration.

It follows from Lemma 1 and (16) that as well as
, for , are rank deficient. Consequently,

there exist infinitely many sets of ’s (with
being one candidate) that satisfy

for

for
(18)

Therefore, it is impossible to determine uniquely the DOA’s.
Although it turns out that the method proposed in [6] cannot

be directly used for PP signals, the analysis carried out here is
useful for the development of a new method to be discussed
in the next section.

V. OUR NEW METHOD FOR PARTIALLY POLARIZED SIGNALS

First, note that our method requires that all VS’s have
the same orientations. Moreover, it requires the following
assumption in addition to Assumptions 1 to 3 and Condition
i) of Assumption 4.

Assumption 5:For , , where
, and .

Remark: The physical implication of Assumption 5 is that
the DOA’s of the signals should not lie in the– , – ,
and – planes. Hence, it appears that our method cannot be
used for scenarios where signals are known to be confined
to the ground plane (i.e., the– plane in our context), with
which many studies reported in the literature are concerned.
However, by reorientating the VS’s such that none of the three
components of the electric field measurable with them lies
in the ground plane, our method becomes applicable to such
scenarios.

A. Estimation of Elevations

As discussed in Section IV, the fact that and
, for , are rank deficient prohibits unique
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determination of ’s from (18) and, thus, direct application
of Li’s method [6]. This then motivates the derivation of other
relationships among measurements of electric and magnetic
fields that are different from those of (18). Indeed, it can be
verified using (8) and (9) that

(19)

where

diag

for (20)

Then, it follows from (16) and (19) that

(21)

We now state a crucial theorem.
Theorem 1: Under Condition i) of Assumption 4 and As-

sumption 5, the matrix , where , is of full
column rank.

Proof: See Appendix B.
Then, by Theorem 1 and (16), the columns of

are linearly independent. Thus, the matrix satisfying

(22)

is unique and, hence, must be . This implies that
the eigenvalues of constitute the diagonal elements ’s
of for . Exploiting (20) and the fact
that and , one can take the
eigenvalues with absolute values not greater than 1 to be’s
for . Then, the elevations ’s are given by

for

B. Estimation of Azimuths

Although (19) contains sufficient information for determin-
ing the elevations, there is no azimuth information since the
matrix does not depend on azimuths. We have managed
to identify one more equation of the desired form, with a
matrix containing azimuth information

(23)

where

diag

for (24)

Then, it follows from (16) and (23) that

(25)

Since the columns of are linearly independent
[by Theorem 1 and (16)], the matrix satisfying

(26)

must be . This implies that for ,
which are the eigenvalues of the matrix , constitute the
diagonal elements of .

It follows from (24) that of the eigenvalues of corre-
spond to and the other of them . Unlike
the case of elevation estimation, there would be ambiguity
in estimating the azimuths. Indeed, one would not be able
to tell whether a given eigenvalue of corresponds to

or since the allowable values for
and coincide exactly. Moreover, each
yields two possible azimuth estimates within . In
Sections V-C and V-D, we shall address these ambiguity
issues.

C. Pairing of Elevation and Azimuth Estimates

Since the elevation and azimuth estimates are obtained
separately using the procedures discussed in Sections V-A
and V-B, they have to be appropriately combined. This can
be done by determining the pairings of the eigenvalues of

and (i.e., the correspondence between each one
of and ). For this purpose, the
procedure suggested by Li [6] is suitable. Indeed, we first
note that

where and are as they appeared in (22) and (26),
respectively. First, denote the eigenvalues of by

for . Then, it can be deduced that is
equal to , where , which is the ratio
of the th eigenvalue of to that of . Moreover, for
a that corresponds to , the value
must be equal to 1. Therefore, we propose first to compute
the values for ,
and then pairing with the , which gives rise to the
minimum among , for .

Now, consider the pairs for . Recall
that each yields an elevation estimate (uniquely), and
the azimuth associated with it is . Since

gives rise to two possible values, namely,
or , we obtain , which is a set of possible groups
of DOA estimates

where and form a group, and one of
them corresponds to the DOA of an incoming signal. Note
that geometrically, corresponds to the reflection
of about the axis.
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D. Two Approaches to Tackling Ambiguity in DOA Estimates

We propose the following two approaches for determining
which of the DOA’s in are the true ones. In particular, we
are concerned with whether or is the
true DOA estimate. Note that , but not ,
is the DOA of the th signal according to our formulation and
notations, and thus, it corresponds to the true DOA. However,
based on their computed numerical values, we will not know
which one corresponds to and which one ,
besides the fact that they are reflections of each other about
the axis.

1) First Approach/Variant: Let be the
matrix whose columns are the eigenvectors associated with the

smallest eigenvalues of the array covariance matrix
. [The smallest eigenvalues are identical in theory

since the signal subspace forPP signals is instead of ].
Then, it can be shown that

for (refer to [15] for justifications). Thus, for
each group of DOA estimates , we
may determine which one is the true DOA by first constructing
the matrices and

. Then, take to be the true DOA if

or otherwise, where denotes the Frobenius
norm.

Remarks:

1) Although we have employed the concept of MUSIC (i.e.,
the steering vector associated with a signal is orthogonal
to the noise subspace) to remove ambiguous estimates,
our method does not involve a search across the entire
array manifold as MUSIC requires. This is a crucial
consequence of carrying out the procedures mentioned
in Sections V-A through V-C, which greatly reduces the
allowable values of the DOA’s to those specified by.

2) Construction of ’s requiresa priori
knowledge about the sensor array such as the sensor
positions, and thus, the first variant cannot be used in
situations where such knowledge is unavailable.

2) Second Approach/Variant:To avoid construction of
, which requiresa priori knowledge

about the array, we adopt a strategy different from that of
the first variant. This is motivated by the fact that in some
applications, sucha priori knowledge may not be available.
For example, it may be difficult to determine the sensor
positions with desired accuracy in some scenarios due to
terrain and time constraints. However, this approach would
require higher computational cost and would encounter some
uniqueness problems as compared with the first approach.
These issues will be elaborated upon in Section V-E.

Note that in obtaining the azimuth and elevation estimates in
Sections V-A and V-B, we did not make use of the matrices

and that contain some additional information about
the DOA’s, which were captured through the-axis electric

sensors and the-axis magnetic sensors, respectively. Such
information will be exploited here to tackle the ambiguity
problem. First, we recall one of the two possible DOA
estimates in the group , of , where

corresponds to the DOA of an incoming signal,
and is the reflection of about the
axis. For the settings we adopted (see the relevant discussions
presented in Section II), the axis is parallel to one of
the three components of electric field measurable with the
VS’s. Physically, the orientations of the three components
with respect to each VS can be unambiguously determined. If
we now adopt another coordinate system such that theaxis
coincides with one of the other two components, we can obtain
another set of DOA estimates (with the use of the procedure
proposed) of which the elevations and azimuths are defined
with respect to that component. Similarly, we can obtain yet
another set of DOA estimates by choosing theaxis to be
parallel to the third component of the electric field and then
carrying out a similar estimation procedure. Then, the false
DOA’s in may be eliminated by exploiting the fact that the
true ones must consistently exist in all three sets of DOA’s.

With the above observations in mind, we propose first car-
rying out a reparamaterization of the DOA and then applying
the estimation procedures discussed in Sections V-A through
V-C. Indeed, we reparameterize the DOA by , as
shown in Fig. 2, where , and .
Note that the parameters and are the “azimuth” and
“elevation” angles with respect to the new coordinate system
with axes , , and , which coincide with the , , and axes,
respectively, of the previous coordinate system. Without loss
of generality, let denote the same DOA as for

. [The actual values of may be different
from those of although they correspond to the same
DOA physically since they are defined with respect to different
coordinate systems.] Then, we show in Appendix C that (8)
and (16) lead to the two equations

(27)

where

diag

for

and is a nonsingular matrix, and

(28)

where

diag

for

By Theorem 1 and (16), the matrices and
are both of full column rank. Thus, we can
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Fig. 2. Reparametrization of the DOA(�;  ) by the parameters(�̂;  ̂).

carry out the steps similar to those for estimating ’s
and obtain another set that contains groups of DOA
estimates in terms of and :

Geometrically, is the reflection of about
the axis.

Next, we reparameterize the DOA by , as
shown in Fig. 3, and let denote the same DOA as

for . Carrying out the steps similar to
those presented in Appendix C, we obtain

(29)

where

diag

for

and is a nonsingular matrix, and

(30)

where

diag

for

By Theorem 1 and (16), the matrices and
are both of full column rank. Thus, with the

steps similar to those for estimating ’s, we obtain yet
another set , which contains groups of DOA estimates
in terms of and :

Fig. 3. Reparametrization of the DOA(�;  ) by the parameters(~�; ~ ).

Geometrically, is the reflection of about
the axis.

Now, we shall discuss the strategy for determining which
elements in correspond to true DOA’s with the use of the
DOA information available in and . Recall that con-
sists of groups of DOA estimates, namely,

, for , and for each group, there is one
estimate that corresponds to the DOA of an incoming signal.
Therefore, it is a challenge to eliminate those that do not
correspond to the DOA’s of the incoming signals. Since the
true DOA’s are contained in all three sets, , and ,
one sensible approach is to examine whether each DOA in
matches one in and at the same time one in .

In practice, perfect matching cannot be expected due to
errors in estimating each of the elements in, , and

. Therefore, we would need a matching procedure that
takes estimation error into considerations. To facilitate our
discussions, let us define two unit vectors and
that point toward and , respectively

and

(31)

[Recall that , as defined in (3), is the unit vector
pointing toward .] Since , , and
were defined to correspond to the same DOA, ,

, and must be the same vector.
Now, we propose first computing the matching indexes

and for (which involve
all the DOA’s in )

and
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where and are defined as

(32)

(33)

and “ ” is the dot product operator. The term
yields the angular separation between the unit vectors

and , and the value is zero if and
are equal and greater than zero if they are different. Clearly,
the matching index would equal zero in theory,
whereas yields a relatively large value in
general. Therefore, it is sensible to assume that the DOA
giving rise to a matching index of relatively lower value is
the true DOA.

With the matching procedure discussed above, an element in
of the form will be classified as the true DOA if

. The question is whether such an element
in fact corresponds to the DOA of an incoming signal. In this
connection, the following lemma indicates that in theory, the
chance of an element in that does not correspond to any
true DOA but is erroneously classified as one is very slim (the
proof of the lemma is quite straightforward and thus is not
included here).

Lemma 2: Given that the DOA sets
, and

each contain pairwise distinct DOA’s that
are, respectively, defined with respect to the first, second,
and third coordinate systems mentioned above, ,

, and correspond to the same DOA for
, and , , and are as defined in (3), (32),

and (33), respectively. Then , where
, if and only if one of the following conditions

holds.

i)

ii)

iii)

iv)

v)

where , , , and .
Remarks:

1) Existence of a vector falling in leads
to being accepted as a true DOA. However,
this does not necessarily imply incorrect classification.
Indeed, Condition i) corresponds to scenarios where
there exists an incoming signal with DOA
parallel to the axis. This means that both
and correspond to the DOA of the same
signal. On the other hand, Condition ii) corresponds to
scenarios where there exist two incoming signals, one
of which is the DOA of the reflection of the other about
the axis. Thus, and each can
correspond to the DOA of such an incoming signal.

2) Incorrect classification takes place when Conditions
iii)–v) are satisfied. Conditions iii)–v) correspond to
scenarios where there exist at least three incoming
signals. Indeed, Condition iii)/iv) hold when there exists
a signal whose DOA coincides with the reflection of
the DOA of one other signal about theaxis, and at the
same time the reflection of the DOA of another signal
about the axis/ axis. On the other hand, Condition
v) holds when the reflection of the DOA of one signal
about the axis coincides with the reflection of the
DOA of one other signal about the axis and at the
same time coincides with the reflection of the DOA of
another signal about the axis.

3) Conditions iii)–v), which are of measure zero in the-
ory, would lead to incorrect classification. In practice,
however, measurement noise cannot be avoided, and
thus, incorrect classification is of nonzero measure.
Indeed, may be wrongly classified as a
true DOA if it is close to any one of those satisfying
Conditions iii)–v) in the presence of noise. Nevertheless,
Lemma 2 is useful since it indicates that in general, the
probability of incorrect classification when near-perfect
measurements are available is reasonably low.

The set of DOA’s leading to incorrect classification, which
has been discussed in Remark 2 of Lemma 2, can be further
reduced with additional different parametrization of DOA pa-
rameters (or, equivalently, rotation of the coordinate system).
Here, we will not attempt to identify the best parametrization
scheme as it is a subject by itself. Instead, we shall illustrate
the idea by presenting an example. Indeed, we first rotate the
original coordinate system by a/4 rotation along the –
plane followed by a /4 rotation along the new– plane (the
unit vectors along the , , and axes of the new coordinate
system are, respectively, , ,
and ). Repeating the steps similar to those of
obtaining in Sections V-A through V-C, one will obtain
the fourth set of DOA estimates, say, . Then, one may
identify the true DOA’s in ’s as those that consistently
exist in , , , and . With the use of four such
different DOA parameterizations, the set of DOA’s leading
to incorrect classification will be smaller than that obtained
by using just the three different DOA parameterizations. In
particular, incorrect classification associated with Condition
v) of Lemma 2 is alleviated. Indeed, consider a scenario of
three incoming signals with DOA’s , , and

. Then, Condition v) of Lemma 2 is satisfied, and
will be wrongly classified as a true DOA with the

use of just , , and associated with the first three DOA
parameterizations. However, incorrect classification does not
occur if we employ , , , and .

E. The Complete DOA Estimation Procedures

Several key ideas behind our DOA estimation procedures
for PP signals and the relevant mathematical justifications have
been presented separately in Sections V-A through V-D. It is
beneficial to put those ideas together and present the complete
estimation procedures, including those essential steps such as



HO et al.: EFFICIENT METHOD FOR ESTIMATING DIRECTIONS-OF-ARRIVAL OF PARTIALLY POLARIZED SIGNALS 2493

estimation of the dimension of signal subspace, which we have
not addressed.

The First Variant:

Step 1: Compute the estimate of array covariance matrix

where is the number of snapshots. Then,
compute the eigenvalues

of and the corresponding eigenvectors
.

Step 2: Estimate the dimension of signal subspace
using the minimum-description-length-based pro-
cedure [16]. (Note that in theory, the number of
signals is .)

Step 3: Form the signal subspace .
Let be the submatrix of con-
sisting of the th, th, , th
rows of for .

Step 4: Compute, using the total least squares algorithm
[13], the matrices and that satisfy

(34)

(35)

Step 5: Compute , which are the eigenval-

ues of , and of .

Step 6: Compute , which are the eigenval-

ues of , and then for ,
compute the values for

. Pair with the associated with
the minimum of these values.

Step 7: Choose the smallest eigenvalues of ,
and identify them as for .

In addition, identify the eigenvalue of
associated with (based on the pairing

relationship established via Step 6) as .

Estimate the elevation by Re
for and the corresponding azimuth
by Re , where Re()
denotes the real part of. A set of groups of
DOA estimates can then be obtained

Step 8: Form the noise subspace
. For each group of DOA estimates

and in , where
, take as a true DOA if

or take as a true DOA otherwise.

The Second Variant:

Step 1: This step simply consists of Steps 1–7 of the first
variant.

Step 2: Adopt another coordinate system and reparameter-
ize the DOA by in the way described in
Section V-D2. Replace (34) with

and (35) with

and repeat Steps 4–7 of the first variant. Then,
another set of groups of DOA estimates in terms
of will be obtained

Step 3: Adopt yet another coordinate system and reparam-
eterize the DOA by in the way described in
Section V-D2. Replace (34) with

and (35) with

and repeat Steps 4–7 of the first variant. Then, the
third set of groups of DOA estimates in terms
of will be obtained

Step 4: For each group of DOA estimates and
in , where ,

compute the matching indexes and

where

and

Take as a valid DOA estimate if
, or take

otherwise.
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Fig. 4. RMSE of the elevation estimate, and the CRB, of one signal impinging on one vector sensor. The azimuth of the signal is fixed at 45�, and
the elevation 1 varies from�90� to 90�. The words “PP” and “UP” in the legend in the figure indicate that the curve corresponds to, respectively,
scenario with a PP signal and that with a UP signal. (The CRB’s are identical for the two different scenarios, whereas the RMSE of MUSIC for a UP
signal coincides with that of the CRB and, thus, is not shown here.)

Remark: The strength of the second variant of our method
is that it does not requirea priori knowledge about the array
configurations, but it will lead to incorrect classification for
scenarios where the DOA’s of the signals satisfy Conditions
iii)–v). On the other hand, the first variant is computationally
more efficient than the second variant (the computation cost
of Steps 2–4 of the latter is clearly much higher than that
of Step 8 of the former) and does not have the ambiguity
problem. However, it requires the information about the array
configurations.

VI. SIMULATION RESULTS

We shall now present some numerical examples to demon-
strate the effectiveness of the method we proposed. Altogether,
two experiments were conducted. In each of the experiments,
we generated 500 Monte Carlo runs, and for each run, 100
snapshots were generated. The signal-to-noise ratio (SNR)
is defined as the ratio of the incident signal power to the
noise power received at each VS and is equal to 10 log

, where and are, respectively, the powers
of the CP and UP components of theth signal, and is
the noise power. The SNR’s of each signals were fixed at 15
dB. We compared the performance of our proposed estimator
with MUSIC [15] and with the Craḿer–Rao bound (CRB)
given by [1, Eq. (3.4)]. MUSIC basically searches for the
“steering matrices” in the array manifold of UP signals, i.e.,

, that
intersect the noise subspace and then computes the DOA’s
accordingly. A step size of 0.1was used to perform the
search.

In the first experiment, we simulated one signal impinging
on one VS. The azimuth of the signal was fixed at 45, and
the elevation was varied from 90 to 90 in steps of 5.
We consider two scenarios with, respectively, a UP signal and
a PP signal with polarization parameters and

(the degree of polarization is 0.5). Fig. 4

shows the root-mean-square errors (RMSE’s) of the elevation
estimates obtained with our method for the scenarios where
there exists a UP signal as well as those for the PP signal.
It also shows the estimates obtained with MUSIC for the
scenarios where there exists a PP signal and the CRB. (The
CRB’s for the two scenarios are identical, and the RMSE of
MUSIC for a UP signal is very close to the CRB and is, thus,
not shown.)

It is shown in Fig. 4 that for elevation ranging from60 to
60 , the RMSE’s of our method remained below 3and were
slightly larger than those of MUSIC. Although the RMSE of
our method rose to about 7when elevation was 90 , it
will not result in serious setback in some applications such as
estimation of the DOA’s of skywaves, where signals of high
elevation are of less concern. Indeed, skywaves are often ex-
ploited for long distance communications, and high elevation
skywaves often correspond to relatively nearby transmitting
sources.

Although the accuracy of the estimates obtained by our
method is poorer than that by MUSIC, our method is com-
putationally more efficient as it does not require searching
across the entire array manifold. Moreover, one variant of
our method does not requirea priori knowledge about the
sensor positions. In this connection, it is worth mentioning that
the performance of MUSIC depends greatly on the accuracy
of the array manifold, which in turn is dependent on the
accuracy of the sensor positions. If the sensor positions are not
known precisely, the DOA estimates of MUSIC could degrade
significantly. In cases where high-accuracy DOA estimates
are required and the sensor positions are known to desired
accuracy, our method can be used to provide initial estimates.
Then, more accurate estimates can be obtained with MUSIC
via performing a search across only those regions of the array
manifold that are close to the steering matrices associated with
the initial estimates. This approach will lead to considerable
reduction in computational cost.
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Fig. 5. RMSE of the elevation estimate of the second signal for scenarios of two signals impinging on an array of four vector sensors with coordinates (0,
0, 0), (1, 0, 0)�, (0, 1, 0)�, (1, 1, 0)�. The azimuths of the two signals are fixed at 45�, the elevation of the first signal is fixed at 45�, and the second ( 2)
varies from 0� to 45�. The words “1 PP+ 1 UP” and “2 UP’s” in the legend in the figure indicate that the curve corresponds to, respectively, the scenario
where there exists a UP signal and a PP signal and that where there exist two UP signals. (The CRB’s are identical for the two different scenarios.)

Note that from Fig. 4, we can see that the RMSE’s of our
method, as well as for MUSIC, for the PP signal were larger
than those for UP signal. This is due to the fact that our
method, and MUSIC by the way we apply it (see the first
paragraph of this section), exploits only the UP component
of the PP signal for DOA estimation. Further experiments
(which are not shown here) indicate that when the degree of
polarization is about 0.9, the DOA estimate of our method
becomes quite poor. Note that our method will not be able
to estimate the DOA’s of a CP signal, and, in contrast, the
method proposed by Li [6] requires all the signals to be CP.

In the second experiment, we simulated two uncorrelated
signals impinging on an array of four VS’s. The sensor
coordinates were (0, 0, 0), (1, 0, 0), (0, 1 ,0) , and (1, 1, 0) ,
where denotes the wavelength of the signals. We consider
two different scenarios: one where both the signals are UP and
the other where one of the signals is UP and the other PP. For
both scenarios, the DOA of the first signal was

, and the second signal was ,
where the value of was varied from 0 to 35in steps of 5.
Moreover, for the second scenario, the first signal is UP, and
the second signal is PP with parameters
and (the degree of polarization is 0.5). Fig. 5
shows the RMSE’s of the elevation estimates of the second
signal obtained with our method, as well as those with MUSIC,
and the CRB for the scenarios where there exist two UP signals
and those where there exist one UP signal and one PP signal.
(The CRB’s for the two scenarios are identical.) It is apparent
that the RMSE of our method was only slightly larger than
those of MUSIC for the range of elevation from 0 to 30. For
elevation between 0to 20 , our method was at most 0.65
poorer than the CRB.

Note that both variants of our method have led to the same
results shown in Figs. 4 and 5. Indeed, the difference between
the two variants lies in the approach to determining which of

the elements of are the true DOA’s, and for the experiments
conducted, both variants have led to the correct choice of true
DOA’s.

VII. CONCLUSION

We first examined the possibility of applying Li’s method
[6] to partially polarized signals. Indeed, we began by study-
ing whether the relationships among the measurements of
electric and magnetic fields obtainable with vector sensors
that Li [6] had established are also valid for partially po-
larized signals. Although the same relationships hold, we
discovered that the information they contain is not sufficient
for determining uniquely the DOA’s for partially polarized
signals. Subsequently, we derived a new set of relationships
and an appropriate estimation method with two variants. Our
method is computationally efficient, and one of the variants
does not requirea priori information about the array system
such as sensor positions. Moreover, simulation results have
demonstrated that our method is effective.

While Li’s method [6] works well with only completely
polarized signals, our method is applicable to only partially
polarized signals. Therefore, it remains a challenge to develop
an estimation method that possesses the strengths of both Li’s
and of our method for scenarios where completely polarized
signals and partially polarized signals co-exist.

APPENDIX A
THE IMPLICATION OF ASSUMPTION 4

We shall establish that Assumption 4 ensures the matrices
and are of full column rank. First, let

. From (12), we have
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where diag , and

. Under Assumption 4, we have
and for ,

implying that is nonzero for . Consequently,
is of full column rank. Moreover, is of full column

rank under Assumption 4, and , as it is defined [see
(12)], is also of full column rank. These facts imply that

is of full column rank. Using similar strategy,
we can show that is of full column rank.

APPENDIX B
PROOF OF THEOREM 1

We first show that under Condition i) of Assumption 4, the
matrix , where , is of full column rank if

for (36)

where C denotes the th row of the ma-
trix . Indeed, the matrix
is of full column rank under Condition i) of Assumption 4, and
this implies that there exists a nonsingular matrix
such that

(37)

Since
for , we can express it as

(38)

where we have (38a), shown at the bottom of the page.
It then follows from (37) and (38) that

Since is nonsingular, the ranks of the matrices
and are the same. Thus, it suffices to show
that the matrix is of full column rank if (36)
holds, or equivalently, the null space of contains
only the zero vector if (36) holds. To see this, let

be a vector inC such that

(39)

We shall show that for . From the th
row and the th row of (39), for , we obtain

for

Clearly, if (36) holds, then and satisfying the above
equation must be 0 for , and hence, the matrix

is of full column rank. With this, we establish that
under Condition i) of Assumption 4, the matrix is
of full column rank if (36) holds.

Now, we shall show that under Assumption 5, (36) holds.
To see this, we assume the contrary that Assumption 5 holds
but that (36) is invalid. This implies that there existand ,
where , such that

for some

Note that there are altogether possible combinations
of and , where , and . Now, let
us denote as . Clearly,
if , then . Thus, we may
consider just 15 possible combinations ofand , where

, and . In this connection, it can be
verified that

if and only if

if and only if or

if and only if and

if and only if or

if and only if or

if and only if or

if and only if and

if and only if or

if and only if

Therefore, the value of , where , equals
0 only if , where 1, 0, 1, 2 or .
This contradicts our hypothesis that Assumption 5 holds. In
conclusion, the matrix is of full column rank if
both Assumption 5 and Condition i) of Assumption 4 hold.

...
...

...
...

...
...

C (38a)
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APPENDIX C
DERIVATION OF (27) AND (28)

Recall that in the first coordinate system, and
are two orthogonal vectors that span the same plane as
the electric and magnetic field vectors of theth signal.
Now, let us denote, for the new coordinate system,
and as the corresponding two orthogonal vectors that
span the same plane as the electric and magnetic field vec-
tors of the th signal. [Note that, in terms of and ,

and can be expressed as ( )
and ( ), respectively.]
Thus, geometrically, the vectors , , , and all
lie on the same plane, and (or ) is the rotation of
the vector (or ) via angle in the plane
containing and . Thus, the vectors are related as

(40)

where is the rotation matrix as defined in (6). Then, it
follows from (9) and (40) that we can express the matrix

in terms of and as

(41)

Now, let us denote

...
...

...

where denotes the ( ) zero matrix. Then, it can be
verified using (8) and (41) that

(42)

where

diag

for

Moreover

(43)

where

diag

for

Equations (27) and (28) can then be obtained directly from
(16), (42), and (43).
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