IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 3, MARCH 1999 601
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Abstract—We study the performance of the minimum-noise- Baden, Switzerland, is a company that manufactures them for
variance beamformer employing a single electromagnetic (EM) signals in the 75 Hz—30 MHz frequency range, and Flam and
vector sensor that is capable of measuring the complete electric Russell. Inc. in Horsham. PA. makes them for the 2—30 MHz

and magnetic fields induced by EM signals at one point. Two . .
types of signals are considered: One carries a single messagefrequency band. Lincoln Lab at the Massachusetts Institute

and the other carries two independent messages simultaneously.0f Technology, Cambridge, has performed some preliminary
The state of polarization of the interference under consideration localization tests with the EM vector sensors manufactured by
ranges from completely polarized to unpolarized. We first obtain  Flam and Russell, Inc. [17]. Some other recent research on

explicit expressions for the signal to interference-plus-noise ratio sensor development is reported in [23] and [24]
(SINR)_ in terms of th_e parameters of _the _sign_al, _interferenc_e, DOA estimati ith EM t h b. f h
and noise. Then, we discuss some physical implications associated estimauon wi VECIOr sensors has been or muc

with the SINR expressions. These expressions provide a basisinterest lately. Since Nehorai and Paldi [1], [2] proposed the
for effective interference suppression as well as generation of use of EM vector sensors for DOA estimation, there have
dual-message signals of which the two message signals havgeen a few studies of uniqueness [3]-[6], [16]. Various DOA
minimum interference effect on one another. We also analyze the estimation algorithms have also been suggested in [7]-[14],

characteristics of the main-lobe and side-lobe of the beampattern . e L
of an EM vector sensor and compare them with other types of Which have indicated the superiority of EM vector sensors

sensor arrays. over scalar sensors. In particular, it was revealed in [4]—-[6] that
Index Terms—Beamformer, direction of arrival, electromag- with just an EM.veCtor Sensor, the DOA’s and. polarizations
netic, vector sensor. of up to three signals can be uniquely determined (seven or

more distributed scalar sensors would be needed for the same
purpose [25]).

Beamforming with EM vector sensors, however, has re-
IRECTION-of-arrival (DOA) estimation and beamform-ceived little attention despite their potential advantages. Here,
ing for electromagnetic (EM) waves are two commomwe list several advantages. First, a single EM vector sen-

objectives of array processing. Early work on DOA estimatiosor can beamform in a three-dimensional (3-D) space while
and beamforming has been based on scalar sensors, eacbcofipying very little space. In contrast, conventional scalar-
which provides measurements of only one component of tsensor methods require a two-dimensional (2-D) array to
electric or magnetic field induced [18]. Subsequent researighplement 3-D beamforming. Second, the findings reported
has investigated the use of sensors that measure two compofl] and [2] shed light on the ability of vector sensors to
nents of the electric or magnetic field (see, e.g., [19]-[21]) amdceive/reject signals based on both their polarizations and
tripole sensors that measure three complete components of M@A's. Polarization properties provide a crucial criterion
electric field [22]. In recent years, researchers have propoged distinguishing and isolating signals that may otherwise
the use of EM vector sensors that measure the three comptterlap in conventional scalar-sensor arrays. Third, based on
components of the electric field and three components of the results reported in [4]-[6] and the fact that EM vector
magnetic field at one point for DOA estimation [1]-[17].  sensors search in both the polarization and DOA domains,
EM vector sensors as measuring devices are commercidyl vector sensors should be able to handle more signals
available and actively researched. Indeed, EMC Baden Ltd.iin beamforming applications as compared with (the same
number of) scalar sensors. Conventional scalar-sensor arrays
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In this paper, we investigate the performance of a minimum- UP
noise-variance type beamformer [26] for the case of onePD

Unpolarized.
Polarization difference.

EM vector sensor, restricting our investigation to scenariosULA Uniform linear array.
where there exist one signal and one interference that ar&JCA Uniform circular array.

uncorrelated. Such a beamformer requires the knowledgey) Notations:
of the DOA and polarization parameters of the signal and( AL

assumes that the signal, interference, and noise are mutually
uncorrelated. The beamformer minimizes the output variance
while maintaining the gain in the direction of the signal.
This has the effect of preserving the signal while minimizing
contributions to the output due to interference and noise
arriving from directions other than the DOA of the signal. Two
types of signals are considered: One carries a single message, ®)
and the other carries two independent messages simultaneous

[1], [2]. We will call the former a single-message (SM) signal

and the latter a dual-message (DM) signal. On the otherYH(t)
hand, the interference under consideration takes the form of
a partially polarized (PP) signal, which can be completely
polarized (CP) at one extreme and unpolarized (UP) at the
other. Note that SM signals are CP, whereas DM signals are’s 5a(t)

T

PP or UP. sq,1(t), sa,2

We first obtain explicit expressions for the signal to
interference-plus-noise ratio (SINR) in terms of the parameters
of the signal, interference, and noise for both SM signals and
DM signals. Then, we discuss some physical implicationsW
associated with the SINR expressions. In particular, we deduce
that for the two types of signals of interest, the SINR rises with
an increase in the separation between the DOA’s and/or the
polarizations of the signal and the interference for all DOA’'s ¢
and polarizations (scalar-sensor arrays and a single tripole do
not have such properties). Moreover, we identify a strategy
for effectively suppressing an interference with an EM vector 2
sensor. The SINR expression for the SM signal that we derive
also provides a basis for generating a DM signal in which B(¢, )
the two message signals have minimum interference effect on
one another. The analyses concerning SM and DM signals arQ(«@
presented in Sections Il and IV, respectively. In Section V, h(3)
we present numerical examples that are in agreement with our )2
analyses. Finally, in Section VI, we analyze the characterlsncsaz er TG u
of the main-lobe and side-lobe of the beampattern of an EM
vector sensor and compare them with other types of sensoffs
arrays. O'd i O'd 2

Rsa Rd

2
Il. PROBLEM FORMULATION AND PRELIMINARY DISCUSSION o

We first introduce the abbreviations and notations used in
this paper. AdL

A. Abbreviations and Notations
1) Abbreviations: AL?

EM Electromagnetic.
SINR Signal-to-interference-plus-noise ratio.

DOA Direction-of-arrival. g
DM Dual-message.
SM  Single-message. A

DOP Degree of polarization.
CP  Completely polarized.
PP  Partially polarized.

ys(t), ya(t)

eE(t), eH(t)

Transpose, Hermitian, and complex conju-
gate.

n X n identity matrix.

6 x 1 complex envelope (phasor) measure-
ment (both electric and magnetic fields)
received at an EM vector sensor at time
t associated with SM signal or DM signal.
3 x 1 complex envelope (phasor) electric
field measurement.

3 x 1 complex envelope (phasor) magnetic
field measurement.

3 x 1 complex envelope (phasor) electric
and magnetic noise.

Complex envelope of an SM signal.
Complex envelopes of the first and second
message signals of a DM signal.
Covariance matrices of(t), yu(t).
Interference covariance matrix.

Weight vector of the minimum-noise-
variance beamformer.

Azimuth and elevation associated with a
DOA.

Orientation and ellipticity angles associ-
ated with the polarization of a CP signal.
Vector denoting¢, v, o, F]%.

Steering vector of an EM vector sensor for
a CP signal withé.

Steering matrix of an EM vector sensor for
a UP signal with DOA(¢, ).

Rotation matrix with anglev.

2 x 1 unit-norm vector representing ellip-
ticity of a polarization.

Powers of the CP and UP components of
an interference.

Power of an SM signal.

Powers of the first and second message
signals of a DM signal.

Power of the electric/magnetic noise.
Difference between the polarizations of an
SM signal and interference.

Difference between the polarizations of the
first message signal (of a DM signal) and
interference.

Difference between the polarizations of the
second message signal (of a DM signal)
and interference.

Angular separation between the DOA'’s of
the signal and interference.

Wavelength.

Note that we use the subscripts,”“d,” “d, 1,” “d, 2,”
and “" to associate some symbols with, respectively, the SM
signal, the DM signal, the first and second messages of a
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DM signal, and interference. For example, the symb@ls o7 ./(o7 ,+07 .). The interference is said to be CRif . # 0
Ba,1, B4, 2, and3; denote the ellipticity angles associated withhut o2 , = 0, PP ifo2 . # 0 ando? , # 0, and UP ifo? , # 0
respectively, SM signal, the first and second messages obu afc = 0. 7 7 7

DM signal, and interference. The output of a beamformer in this case is

Now, we shall describe the data models as proposed in [1]

P H
and [2] for an SM signal and a DM signal in Sections 1I-B Sa(t) = W, ya(t) (24)
and C, respectively. where w, € C®*! is a weight vector. Suppose the DOA
and polarization parameters of the signal are known; then, for
B. Single-Message Signal the minimum-noise-variance beamformer, the weight vector is
With the above notation, we have obtained through the constrained minimization
o) a <yE(t)> w, = arg wérégl)(l wiR,w, subject towa, =1
yu(t) (2.5)

=a(l,)s,(t) + B(¢:, ¥:)&,(t) +e(t) (2.1) whereR, = E(y,(t)y¥(t)) is the data covariance matrix,

5

and a, denotesa(@;). The beamformer attempts to suppress

where all incoming interference except for the desired signal with
a(0) =B(¢, 1)Q(a)h(B) steering vectom,.
0= 31
[ . . ] . C. Dual-Message Signal
) V(g ) —v(g, ) The complex (phasor) sensor measurement obtained by an
. . EM vector sensor at time induced by a DM signal in the
—sin ¢ —cos ¢ sin ¢ presence of an interference and additive noise is given by
(v(¢, ) V(p,9))=| cos¢ —sin ¢sin
0 cos ¢ ya(t) =a(0a,1)s4,1(t) + a(0q,2)s4,2(t)
Qo) = < cos «  sin a) + B(¢;, ¥:)§;(t) + e(t) (2.6)
—Sin & Cos «& Where
cos 3
ne = (7)) 22) 00,1 = (bar s v 1. 1)
and

e(t) = [eL(t), eL(D)]F, ss(t) € CL, &(t) € C, ye(b), _
y([_[)(t), e[E@(),)eHﬁ)( é] (I:?’Xl(. '?’he first, séc)ond, and third(te)rms 04,2 = (b4, Ve, a2, fa.2)-
on the right-hand side of (2.1) correspond to measuremeiitse first and second terms on the right-hand side of (2.6)
induced by, respectively, the signal, interference, and noiserrespond to measurements induced by, respectively, the
Physically, yr(t) and yy(t) are, respectively, the three-first and second message signals associated with the DM
component measurements of the electric and magnetic fiesiignal, whereas the third and fourth terms correspond to the
at the sensor at tim¢, ander(t) and ey (¢) are the noise interference and noise, respectively. The variablgs.(¢)
components in these measurements. The parameétess and a(64 1), wherek = 1, 2, are the complex envelope
(=7, 7] andy € [-7/2, 7 /2] are the azimuth and elevationand steering vector of théth message signal. Note that
of the signal, andx € (—#/2, /2] and 3 € [-n/4, n/4] the two steering vectora(, ) anda(f, ») have the same
are the polarization parameters, which are referred to as DOA (¢4, 1) but different polarizations(cy 1, £4,1) #
orientation angle and ellipticity, respectively. The veci¢8) (o 2, F4 2). We will propose in Section IV an appropriate
is the steering vector of an EM vector sensor associated witha@woice of (cey 1, B4 1) and (a2, B4 2) that minimizes the
SM signal with parametdt, andv(¢, 1) andv(¢, 1) are unit interference effect on one message signal due to the other.
vectors that span the same plane as the electric and magnetithe outputs of a beamformer for the first and second
field vectors of the incoming signal with DOA, ¥). The message signals are
variables(t) is the complex envelope of the signal afydt . H . H
the compl(e>2 envelopes of the interference. he) Sa.1(t) = Wa1ya(t) and Sq(f) = wy »yul(?)
The covariance of;(t) determines the state of polarizatiorwhere w, 1, wy 2 € C°*' are the corresponding weight
of the interference. Indeed, the interference covariance matvixctors. Note that in order to optimize the recovery of the
R; 2 E(&,()€2(t)) can be expressed as (see [15, Lemma 1})essage signals, a specific weight vector is used for each
o2 message signal separately. Suppose the DOA and polarization
R, = 221, +ffi2cQ(ai)h(ﬂi)hH(ﬁi)QH(ai)- (2.3) parameters of the signal are known. Then, for the minimum-
2 ’ noise-variance beamformer, the weight vector for #th
The first term on the right-hand side of (2.3) is the UP conmessage signal, wherk = 1, 2, is obtained through the
ponent with powebi « and the second is the CP componenrjonstrained minimization
with power o7 .. The degree of polarization (DOP) of the N . " . "
interference is defined as the ratio between the power of the' % = & Heih W Rqw,  subject tow " ay, . = 1
CP component and the total power of the interference, i.e., (2.7)
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where R, = E(y.(t)yi(t)) is the data covariance matrix,new coordinate system, the ellipticity angh of the signal

and ay 4 denotesa(f, ). will remain unchanged. However, the orientation anglewill
change, and we denote it hy,. According to the Poincér
D. Assumptions sphere representation, a polarizatig¥,, 5) is represented

y a point (referred to as Poin@apoint for convenience) on

The analyzes to be carried out are based on the foIIowin§. h h ter is at th . d radius is 1. Th
Assumption 1:The DOA and polarization parameters of th sphere whose center 1S at the origin and radius 1s L. The
position vector of that point is

signal are known.

Assumption 2:The complex envelopes of,(t), sa,1(t), pr = [cos o' cos 23, sin o cos 263, sin 28], (2.10)
and s4 o(t), and of each components efz(¢) and eg(t),
are all zero-mean Gaussian random variables. Such a representation has two desirable properties. First, for
Assumption 3:The signal is uncorrelated with the interfertwo polarizations with the same orientation angle (with respect
ence. to the new coordinate system), the larger the difference in

Assumption 4:The various components of the noise artheir ellipticity angles, the larger the distance between two
uncorrelated among themselves and uncorrelated with b&taincaé points associated with the two polarizations. Second,
the signal and interference. for two polarizations with the same ellipticity angle (with

Assumption 5:The powers of the electric noise and magtespect to the new coordinate system), the larger the difference

netic noise are all equal t? (i.e., the noise covariance matrixin their orientation anglesthe larger the distance between two
is equal too2Ig). Poincaé points associated with the two polarizations. Thus, it

Under Assumptions 2-5, the data covariance matrix is IS meaningful to take thelifference between the polarizations
of the two signalgo be A}, the shorter arc length joining;

R, = oja,a) + B;R;B] +0°Is andp», wherep, andp, are, respectively, the representations
1 1 ! ! 1 e
for the case of SM signal, wherg? = E(s,(t)s*(t)) is the fsorhg]r(; polarizations(cy, /) and (a3, fiz) on the Poincay
power of the signal, and pRem;';lrkS'
Ry = 0] 184,18} | + 05 284 28 5 + BRB/ + 7L i) To obtain the difference between the polarizations of
) . ) two signals, there is a need to know the polarizations
for the case of DM signal, where; , = E(sq,x(t)s, (1)) is as well as the DOA'’s of these signals.
the power of thekth message signal, whefe= 1, 2. ii) It can be shown that the difference between the polar-
izations of two signals is independent of the coordinate
E. Performance Measures system.

To evaluate the beamformer performance, we focus on thdi) When dealing with the difference between the polar-
ratio between the output power of the signal and output power  izations of two signals, we are concerned with only the
of the interference and noise (SINR). The SINR measure has  polarizations of the CP components of the signals.
been used as a performance indicator for beamformers in manj¥) The range ofA; is [0, 7] (see [27]).
studies. In our case, for the SM signal, the SINR is given by V) The arc lengthA; is related to the orientation and

ellipticity angles through Lemma 1.
(2.8) Lemma 1—Compton [22]Consider polarization&ay, 1)
and (a9, f2) associated with two signals. Lét}, 31) and

For the DM signal, the SINR for thth message signal; ,(t) (ah, B2) be the polarizations in a coordinate system such that

2 H g oH
oiWasal wy

wl(R; — c2a,all)w,’

SINR, 2

is the DOA’s of these signals both lie in they plane. Then
A 0'3 kwé_’kad ka(’jkwd k 2 A% H H/ 1 / 2
SINRy j, = —f—— G (2.9) cosT\ 5 ) = [h"(32)Q" (o) Q(a)h(A)".  (2.11)
Wd,k(Rd — 04, 1, kad,k)wd, k
wherek = 1, 2. F. A Useful Result

In this work, we will obtain explicit expressions for SINR  ynder Assumptions 1-5, it can be shown that the weight
SINR;, 1, and SINR; 2, and investigate their characteristicggctors satisfying, respectively, (2.5) and (2.7) are
in terms of the various parameters of the signal, interference,

and noise. w - Rita
To interpret the SINR expressions, we introduce a parameter * alR;'a,
that provides a measure for the difference between the poland
izations of two signals using the Poinéasphere polarization B Rglad7k k=1 2 2.12)
representation [27]. First, l6t1, 1, a1, B1), and (2, s, W, k = adH’kR(Iladyk’ =4 4 :

«oe, J2) be the DOA’s/polarizations of two signals. For the o _ . _ .
Poincaé sphere representation, we need to consider a n&ubstituting (2.12) directly into the expressions for SINR given
coordinate system, where the DOA’s of the two signals bolly (2.8) and (2.9), the DOA’s and polarizations of the signal

lie 'n. the a:—y plane (SUCh a coordlna}te SyStem_Can always baThe increase in difference between the orientation angles is valid within
obtained with an appropriate coordinate rotation). In suchaaertain (useful) range of the orientation angles.
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and interference, as well as the noise power, will be hidden I1l. SINR FOR SINGLE-MESSAGE SIGNAL
in two matrices whose inverses need to be evaluated. Foi, convenience, we shall refer to the angular separation

ease of interpreting the dependence of SINR on the signglyyeen the DOA's of the signal and interference as DOA
interference, and noise, we need the following result, Whid]é%paration and denote it by. Moreover, we shall refer to
useful for simplifying the analy5|520f§|NR EXPressions. - the difference between the polarizations of the signal and
Lemma 2—Cox [28]:Let R = ojaa™ + G € €77, and  jyierference as polarization difference (PD). Theorem 1 below
Wwearg min woRw, subject tow”a = 1 expresses the SII\LI%prici_tIy in t_erms of the DOA sep_aration,
we o PD, and powers of the signal, interference, and noise.
Theorem 1: The expression of SINR as given in (2.8),
wherea € C®*! is as defined in (2.2), ang, is a real constant. can be expressed as
If G is nonsingular, then

2 (1+cosv)?

2 H o H o =2 | = -
ak‘?V:HZaWW — o2 G la. SINR, =0, o2 (024 Jiu)
G. Coordinate Rotation o2, o7 . cos? %
Clearly, the analysis of the SINR expressions can be sim- “ 207 202 +o2+02 || (3-1)
plified somewhat with Lemma 2. However, the SINR would ’ ’
be, in terms of the general expressions 496), the steering Proof: See Appendix A.
vector of an EM vector sensor, which is very complex: Remarks:
—(Ca C3 + S0 S3) Ss + (Sa C3 — J Ca S3) Cp Sy i) For UP interference_, the PIA; is undefined gnd can
(CaCs 5 Su S9) Cs + (Sa C3 — 7 Ca S3) S Sy take any value withirf0, «]. However,o? . = 0 in this
' (—éa Cs +jCa 58) Cy ’ case, and the last term of (3.1) is zero regardless of the
A0 =1 (sucs—7CaSs) S = (CaCatiSaSs)Cosy - value of A7. .
(Sa Cs — J Ca S3) Co — (Ca Cs + J Sa S3) Su S ii) To obtain (3.1), we n_eed to e_valuate_ gnalytlcally the
(Ca Cs + j Sa S3) Cy inverse of a6x 6 matrix, whlch is nontrivial. However,
’ ’ using Lemma A.1 in Appendix A, we can avoid such
where g, and ¢, denotesin « andcos «, etc. Our strategy is to computation.

apply a sequence of three appropriate rotations of the originaBefore we proceed, recall that, o7 , + o7 ., ando? are,
coordinate system so that for any general scenario, we GaBpectively, the powers of the signal, the interference, and
work with a new coordinate system for which the DOA ohoise. In additiong? , ando? , are the powers of the UP and
the signal is parallel to the axis and that of the interferenceCP components of the interference. The interference is CP if
is in the z—y plane. The three rotations to be effected arg;? = 0 and UP ifo? . = 0. In addition, v and A? are,
successively, as follows: respectively, the DOA separation and PD.
1) a rotation oftan—! » about thez axis of the original ~ Clearly, SINR increases with an increase in the signal’s
coordinate system, whereis given by—[sin 1, cos(¢; powero? but decreases with an increase in the noise power
— ¢s) cos h; — cos P, sin ;]/[sin(¢p; — ¢s) cos ]; o as well as the power of the CP (i.e;; ) or UP (i.e.,o7 ,)
2) arotation ofy), about they axis of the coordinate systemcomponent of the interference. However, the dependencies of
that has been rotated according to 1); SINR; on PD and DOA separation are nontrivial and are
3) arotation ofp, about thez axis of the coordinate systemestablished in the following corollaries.
that has been rotated according to (2). Corollary 1: If aic # 0 and~ # =, then SINR is an
It can be shown that with such a sequence of coordind@reasing function ofA?.
rotations, SINR, SINR,,;, and SINR, », as defined in (2.8)  Corollary 2: If o7, # 0 or A7 # =, then SINR is an
and (2.9), remain invariant. Moreover, the separation betwel@greasing function ofy.
the DOA’s and difference between the polarizations of the Corollary 3: If o7 . = 0, then SINR is independent ofA?.
signal and interference remain unchanged (the latter followsCorollary 4: SINR,  attains  the ~maximum  value
from the definition of the difference between two polarization8!NRy*™ = 207 /o* when eithery = = or both A7 = = and
presented in Section II-E). Consequently, we shall assurfié, = 0 are true. Moreover, SINF* simply takes the value
hereafter that(¢,, ¢s) = (ba.1, Ya1) = (Pa2, Pa2) = of SINR; in the absence of interference.
(0, 0), andy; = 0 (i.e., the DOA of the signal is par- Corollary 5: For given (fixed)o?, o7 , + o7 ., 0%, and~,
allel to the z axis and that of the interference is in théhe minimum of SINR is attained whem\; = 0 ando? , = 0.
z—y plane), which leads to considerable simplification of Proof: See Appendix B.
the analyzes of SINR expressions. With such a setup, theRemarks:
separation between the DOA's of the signal and interference i) Corollary 1 means that SINRgenerally increases with
simply ¢;. In addition, the difference between the polarizations an increase in the PRA?, except for two special cases:
of the signal and interferenca; satisfiescos?(A3/2) = a) o7 ., = 0 or b)y = 7. Note that case a) corresponds
h(3)QH () Q(as)h(B5)]2. to scenarios where the interference is UP and case b)
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to scenarios where the DOA of the signal is exactlyncreases with an increase in the PD (Corollary 1) to effectively
opposite from that of the interference. For case a), tlseippress an interference if the DOA and the CP component
interference has no CP component, and thus, the PD the polarization of the interference are known. Indeed,
should not affect SINR(see Corollary 3). On the otherfor a fixed DOA separationy, we can maximize SINR
hand, by Corollary 4, SINRfor case b) always attainsby transmitting the signal with polarization such that the
the maximum value SINR**, regardless of the other PD is the largest possible, i.eA; = x. This would lead
signal parameters. to SINR, = 072 — (1 + cos 1)o7 ,/2(0® + o7 )]/0”.

ii) A special case of Corollary 1 is that even if the DOA'sClearly, if the interference is CP (i.ez; , = 0), then SINR

iiiy Corollary 2 means that SINRgenerally increases with

v)

Vi)

of the signal and interference are identical, we can stilttains SINR*™* = 202 /02, which is the value when there
increase the value of SINRby increasing the PRA\;. is no interference, regardless of the DOA separation and the
This is a feature that scalar-sensor arrays lack. Indedaferference’s power.

for a scalar-sensor array, if the DOA of the interference

is identical to that of the signal, interference suppressigi Comparisons with Scalar-Sensor Arrays

is impossible regardiess of the PD, the number of Beamformers using scalar-sensor arrays have been ad-
sensors, and array aperture. dressed in the literature [18]. Here, we shall discuss some
- ; : advantages of using an EM vector sensor as compared with
an increase in the2 DOA separation except for the geaiarsensor arrays for beamforming in 3-D space. First,
case where bot;, = 0 and A7 = = hold. For ¢, 5 scalar-sensor array, at least three sensors are needed
the case wherer?, = 0 and A7 = «, SINRP™ , herform beamforming, which means that it will occupy a
can always be attained regardless of the other signglger space than an EM vector sensor. Second, when the DOA
parameters (see Corollary 4). Note thaf, = 0 ofthe interference is identical to that of the signal, interference
means that the interference is CP, abfl = 7 means gyppression is impossible regardless of the number of scalar
that the PD is the largest possible. For a coordinaignsors and the array aperture. In contrast, a single vector
system where the DOA’s of the signal and interferencgnsor can suppress an interference if the difference between
both lie in thex—y plane, such a PD arises when thgnhe polarizatons of the signal and interference is nonzero [see
polarizations associated with the signal and interferengg&mark ii) of the corollaries to Theorem 1]. Third, consider
satisfy (a,, Bs) = (@; = n, —f3;). Physically, the two a signal and an interference with sufficiently large DOA
polarization ellipses associated with the polarizationseparation. Then, to suppress the interference with arbitrary
(as, B5) and («;, 3;) have the same shape but hav@OA, only one EM vector sensor is needed. However, for the
their major axes orthogonal to each other, and at tl@ase of scalar-sensor array, at least four appropriately spaced
same time, the directions of spin of the electric fieldscalar sensors are needed. Indeed, to suppress an interference,
associated with the two polarizations are opposite. the steering vector associated with the interference must be
By Corollary 3, if the interference is UP, then it islinearly independent on that associated with the signal. In this
not possible to increase the SINRy varying the connection, it has been shown that to ensure every two steering
polarization of the signalas, 3;). vectors with distinct DOA’s to be linearly independent, one
Corollary 4 means that SINRattains the largest possi-EM vector sensor is sufficient [4], but at least four scalar
ble value SINR*** when either the DOA'’s of the signal sensors with intersensor spacings all less than half-wavelength
and interference are opposite or when the interferenaee needed for the case of scalar-sensor array [29]. This is a
is CP with largest possible polarization difference result of the fact that an EM vector sensor searches in both
In either case, SINR** obtained is equivalent to thethe polarization and DOA domains, whereas the scalar-sensor
SINR, when there is no interference regardless dfrray uses only time delay information. Fourth, the SINR for
the interference’s power (i.e., the interference becomasvector sensor is isotropic, whereas for a scalar-sensor array,
completely ineffective). it very much depends on the array geometry and does not
Corollary 5 means that for any given DOA separatiorf}ecessarily increase with an increase in the DOA separation.
SINR, attains its lowest value when the interference is

CP with polarization difference equal to 0. B. Comparisons with a Single Tripole

The fact that SINR increases with an increase in the The beamformer using a single tripole has been addressed
DOA separation or PD for all DOA’s and polarizations (segy Compton [22]. In [22], Compton investigated the perfor-
Corollaries 1 and 2) is an important feature associated withance of a single tripole in suppressing a CP interference
an EM vector sensor. Indeed, this feature is desirable as ioi$ receiving an SM signal. From the results of [22], we
natural to expect a higher SINR with a larger DOA separatigtan deduce that unlike the case of an EM vector sensor,
or PD. In contrast, for scalar-sensor arrays and a single tripalge SINR for a single tripole does not necessarily increase
SINR, does not necessarily increase with an increase in thith an increase in the DOA separation or the PD. We shall
separation in DOA’s or polarizations (we will elaborate these two examples to illustrate this property. First, consider a
case of a tripole in Section IlI-B). signal and an interference with DOA's lying in thew plane

The above corollaries are potentially useful in some apnd vertically and linearly polarized. Then, the electric fields
plications. For example, we can exploit the fact that SINRnduced by the signal and interference are identical (except for
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a scale constant), and thus, it is impossible to discriminate tbennection, Corollary 4 of Theorem 1 provides a good way
signal and interference regardless of their DOA separatidor choosing the polarizations. Indeed, consider the scenario
Thus, the SINR remains unchanged (which is the smalleghere there is no external interference, and view one message
possible) regardless of the DOA separation. Next, considesignal as the desired CP signal and the other message signal
signal and an interference with opposite DOA’s and both lyings a CP “interference.” Then, by Corollary 4 of Theorem 1,
in the z—y plane, and suppose that both of them are circularhoth SINR; ; and SINR; » attain their maximum values if
polarized. Then, the SINR when the signal and interferenttee difference between the polarizations of the two message
have the same spin (the PD is 0) is larger than when thsignals is equal ta (i.e., when extracting one message signal,
have opposite spins (the PDs3. [This is because the electricthere is theoretically no interference effect due to the other).
fields induced at a tripole due to the signal and interferencEherefore, we shall assume hereafter, that the polarizations
with opposite DOA’s, are identical (except for a scale constardj the two message signals are chosen in such a way that
if their directions of spin are opposite but are distinct if theithe PD isw, meaning that the polarizations satisfy 1,
directions of spin are identical.] Consequently, the SINR dogk 1) = (wg 2 £ 7, —f4 2) [refer to Remark iii) of the
not necessarily increase with an increase in the PD. corollaries to Theorem 1 for a relevant physical meaning].
Compton has also established that the SINR for a singleFor convenience, we will refer to the difference between the
tripole is the lowest [with SINR being equalbt;?/(02+aﬁc)] polarizations of the first message signal and the interference

if one of the following three conditions holds. (i.e., Ad 1) as the first PD and the difference between the
1) The interference has the same DOA and polarization a@larlzatlons of the second message signal and the interference
the signal. (i.e., A %) as the second PD. Similar to the case of SM signal,

2) The DOA of the signal is opposite from that of theve are able to express SINR and SINR, ., explicitly in
interference, and the polarizations of the signal arf@rms of the DOA separation, the first and the second PD’s,
interference satisfyr, = —a; and 3, = —f3;. and the powers of the two message signals, interference, and

3) The signal and interference are both linearly polarize@ise.
and their electric fields are parallel to each other (i.e., Theorem 2:If (v, 1, B4, 1) = (g, 2 £ 7, —f4,2), then

oy =y = 7r./2 andf3, = 3 = 0in our §§tup). , (2 (14cos )2 , Af’l

We now examine the above three conditions for an EM SINRy 1 =03 ¢ 2T i |\ Mo —5
vector sensor (for scenarios where there exist a CP interference
and an SM signal). The SINRfor an EM vector sensor is 2 9 . 2 Ad1
lowest only if condition 1) is satisfied, and the lowest SINR + 4046, (1 +cos v)" sin” A;
equals2o? /(0?4207 ), which is higher than the lowest SINR Lo
obtained with a single tripole. As for condition 2), Corollary _ 2 2 (1 + cos v)* 2 A7

. , . SINRy2o=0;5|——~——F—|u+wvcos

4 states that as long as the DOA of the signal is opposite ’ 2 o? ot 2

from that of the interference, SINRor an EM vector sensor
always attains the maximum value SIN® regardless of the

2

(1 + cos 7)? sin? Af’ 2)] (4.2)

polarizations of the signal and interference. On the other hand, 4016,

high SINR, can be obtained for an EM vector sensor eVefihere

when condition 3) is met. Indeed, when condition 3) is met, o202

the DOA separation may range from 0o By Corollary 2, W= 24”2

SINR, can be increased by increasing the DOA separation, and 20* +07.)

by Corollary 4, SINR attains the maximum value SINR* otol .

when the DOA of the signal is opposite from that of the = (257 Y352 +02 o7 ) (4.2)

mterference.. o2 4 207 (1 +cos 7)? Ads1
Thus, a single EM vector sensor generally outperforms a 8 = 4.2 v o+ v sin? 2

single tripole in suppressing a CP interference when receiving 037202 ot

an SM signal. s 024_20371 (1 + cos )2 ) A;“

= — I Sln .
2 037102 ot ’ 2

IV. SINR FOR DUAL-MESSAGE SIGNAL 4.3)

A DM signal consists of two SM signals (or CP signals) .
with the same DOA but different polarizations. The effective _ Proof: See Appendix C.
polarization of such a DM signal varies with time, and thus, Rémarks:
the state of polarization of a DM signal can either be PP ori) Theorem 2 is derived based on the assumptiondfigt
UP. To transmit a DM signal (consisting of two uncorrelated ~ andaj ,, which are the powers of the first and second
message signals), it is desirable that the interference effect message signals, respectively, are nonzercazdlfl or
of one message signal on the other be minimal. Since the 0372 is equal to zero, Theorem 2 reduces to the case
DOA parameters associated with the two message signals are of SM signals that have been addressed in Section llI,
identical, it is possible to exploit the difference only in the and the derivation of the SINR expression is somewhat
polarization parameters to reduce the interference effect. Inthis  different from those of SINR; and SINR; .
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ii) To obtain the expressions of SINR and SINR; » in effective SINR. Next, we shall take the powers of the two
Theorem 2, there is a need to evaluate analyticalipessage signals to be identical since it is reasonable to
the inverse of a 6x 6 matrix, which is nontrivial. assume that both message signals are equally important. With
However, using Lemma A.1 in Appendix A, we are abl¢hese considerations, we can easily verify the following from
to transform the problem to one involving inversion ofcorollaries 1-3 of Theorem 2.

matrices of dimensions & 3 or lower. 1) SINR,;, increases with an increase in DOA separation.

Corollary 1: If ¢, # 0 andy # =, then SINR, ; is an 2) SINR.,;, increases when the first (or the second) PD

increasing functionyofAf”“ for k = 1, 2. increases from 0_t@r/2 but decreases when the first (or
Corollary 2: If o2, # 0 or AP ¥ # 7, then SINR, is an the second) PD increases from2 to .

increasing function ofy, for k = 1, 2. 3) SINRmiI1 is indep_endent of the first and second PD’s if
Corollary 3: If rffc = 0, then SINR,  is independent of the interference is UP.

AR for b = 1.9, There are no comparable results for scalar sensors simply
: . because scalar sensors cannot receive two (independent) mes-

sage signals simultaneously. On the other hand, the previous

work [22] on the single tripole does not address the DM signal.

Thus, we will not make comparisons with the scalar sensor or

Corollary 4: SINRy ;, attains the maximum value
SINRP3 = 202, /o2 when eithery = 7 or both AY* = &
and o7 , = 0 are true fork = 1, 2. Moreover, SINR:a*
simply7 takes the value of SINRy in the absence of

. the tripole.

interference.
Corollary 5: For given (fixed)o] |, 07 5, 07, + 07 ., 02,

and, the minimum of SINR ; is attained whem\$"* = 0 V. NUMERICAL RESULTS

and o—i L =0fork=1,2. In this section, we present some numerical examples we

Proof: See Appendix D. computed to assess the reliability of our theoretical prediction
Remarks: of the performance of an EM vector sensor as presented
i) The dependence of SINR; on AP 4, 02, 02, o2, in Sections Il and IV. First, exact data covariance matrices
ando? ,, as presented in Corollaries 1.5 of Theored®s and R, were used in the experiments for checking the

2, is basically identical to that of SINRon A2, v, SINR expressions we derived. Next, to make our experiments
02, 02 02  ando?,, as presented in Corollaries 1—gealistic, we also generatd®l, andR, using a finite number
R ’

i, ¢! i,

of Theorem 1. Therefore, the discussion concernirff Snapshots. . . o
Corollaries 1-5 of Theorem 1 in Section Il is applicable e simulated one SM signal and one interference impinging
to Corollaries 1-5 of Theorem 2. on an EM vector sensor. The signal was circularly polarized
i) Since ps: and pus, as defined in (2.10) [which With positive spin (i.e.3, = «/4). The signal, interference,
correspohd to the representation of, respectivel nd noise were uncorrelated, and the signal-to-noise ratio
(g, 1, Ba.1) and (a2, Ba.2) ON the Poinéaﬁr Sphere] SNR) and interference-to-noise ratio (INR) were both 10 dB.
are7tv’vo éntipodal pbfnts on the Poineasphere, it car,1 We first show the results for the case where infinitely many
be shown that the sum of the first PDY !.and the snapshots (i.e., exa®t, andR,) were used, and the SINR
second PDA%? is equal to a constan;tz Thus. an Was computed based on the “raw” expression (without our
increase in tﬁe first PD will lead to a decreasé in th implifications) given by (2.8). Fig. 1(a) shows the values of
second PD, and vice versa. This has two implication INR; as a function of DOA separation when the DOP of the
First, by Co’rollary 1 of Theo.rem 2, increasing the Valugiterference was 1 (i.ea}, =0, and_hence, the interference
' ’ was CP). The values of the PD considered were/@, and,

of the first (or second) PD will lead to an increase ir\}vhich correspond to interferences whose polarizations were
SINR;, 1 (or SINR; 2) but a decrease in SINR (or P P ’

SINRg,1). Consequently, the values of both SINR respectively, circular with positive spin (i.¢%;, = = /4), linear

] . _(i.e., 3; = 0), and circular with negative spin (i.e3; =
and SINR, > cannot be increased simultaneously Wltlg—7r/4). The scenarios in Fig. 1(b) and (c) were identical to

a change in the polarization of t_he interference. Secpqﬂbse with Fig. 1(a), except that the DOP’s of the interferences
_by Corollary 4 of Theorem 2, if th? D.OA sep_aranor‘\Nere’ respectively, 0.5 (corresponding to PP interference with
is not equal torr, then SINng,.]L attains its maximum o2 =02 )and O (ie.o?, = 0 and, hence, the interference
value when the interference is CP an.d the first PD Wzés UP)i The SINRIn Fi{:;. 1(a)~(c) confirm Corollaries 14
equal tor. However, the second PD will become zeroy¢ thagrem 1. je., that SINRincreases with an increase in
and thus, by Corollary 5, SINR; attains its minimum o poA separation or the PD, SINRs independent of the
value. Thus, for e.ach. DOA s_,eparauon th.at is not equgb when the interference is UP [see Fig. 1(c)], and SINR
to «, SINRy,; attains its maximum value if and only if giains the maximum valugr? /o2 when the DOA separation
SINR;, » attains its minimum value. is = or when the interference is CP (DGP 1) and the PD
Since SINR ; and SINR; » are generally not identical, is 7.
it is not easy to address the SINR for the DM signal as Next, we conducted a simulation for scenarios identical to
a whole. Here, we will consider the “worst” case and usgose of Fig. 1(a)—(c) but with 200 snapshots, and the results
SINRyin 2 min{SINRy 1, SINR;, 2}, which gives the smaller are shown in Fig. 1(d)—(f) correspondingly. The data covari-
value between SINR; and SINR; > as a measure of theance matrix was computed usifg, = Ef;lys(t)yf(t),
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Fig. 1. (a) Graphs of SINRversus DOA separation for one SM signal and one interference uncorrelated with=SNRR = 10 dB. The three curves
correspond to PD= 0, PD = #/2, and PD= =. The DOP of the interference is 1, and true covariance is used. (b) As in (a), but the DOP of the
interference is 0.5. (c) As in (a), but the DOP of the interference is 0. (d)—(f) As in (a)—(c), except that 200 snapshots are used.=a); DidiRite
shapshots available. (b) DOR 0.5; infinite snapshots available. (c) DGR 0; infinite snapshots available. (d) DOP 1; 200 snapshots available. (e)
DOP = 0.5; 200 snapshots available. (f) DOR 0; 200 snapshots available.

whereXN is the number of snapshots, and SINKRas computed  We conducted simulations also for scenarios similar to those
as the average of the SINR obtained based on 100 Monteof Fig. 1(a)—(f) but with a DM signal, and the results were the
Carlo runs. Comparing Fig. 1(d)—(f) with Fig. 1(a)—(c) corresame (see [30]).

spondingly, we see that SINRobtained using 200 snapshots

differs from that obtained using infinitely many snapshots by VI. BEAMPATTERN OF AN

less than 2 dB. However, the dependencies of SINR the ELECTROMAGNETIC VECTOR SENSOR

various parameters are similar. Note that to achieve 10 dBjn this section, we first analyze the beampattern of an EM
SINR; for all the above scenarios, the DOA separations havector sensor and then make a comparison with two other types
to ben/3 and«/2 or below for, respectively, the scenarioof sensor arrays. First, consider an EM vector sensor that has
with infinitely many snapshots and those with finite snapshotseen steered toward (or focused in) the direction/polarization
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0 and assume that there is no noise and interference (an W=l
assumption adopted in some relevant studies such as [26]
and [31]). Then, the normalized response (or beampattern)
of the EM vector sensor due to an incident signal with
direction/polarizatiord;, is given by

9(0r, 0x) = [a" (Or)a(8x)[* /4. (6.1) /
[The functiong(@F, 6;.) reaches the maximum whép = 6, W=n —d =0
and the maximum value attained is 1. Since the magnitude \ a?““"
squared ofa(@) is 4, we have introduced a denominator on \ Sifzzﬁon)

the right-hand side of (6.1) so that the magnitude@fx, ;)

is normalized to 1 whe;, = 8.] Note that unlike scalar-
sensor arrays whose beampatterns are only functions of DOA,
the beampattern of an EM vector sensor is dependent on both R I

the DOA and polarization. To facilitate the analysis of the : L e op
beampattern, we rotate the coordinate system (in the same Sondtant value
way as that discussed in Section II-G) such that= ¢ p =
¢r = 0. Let the separation between the DOA®y, ) and Fig. 2. Polar plot of a cross section of the beampattern of an EM vector
(¢r, ¥x) beyi. Then, by Lemma A.3, (6.1) can be expressedf"™°"
as

140;

F\2 F
9(0r, 0;) = W cos? % 6.2) 120
where AP is the difference between the polarization toward
which the EM vector sensor is steered and the polarization
of the incident signal. Although (6.2) is derived using the
coordinate system whetgr = 1p = ¢ = 0, it holds for any
(¢, ¥r) and(¢x, ¥r). This is because (6.2) is a function of
only two parameters;” and AF", which are both independent
of the actual coordinate system.

From the expression of(@r, 6:) given by (6.2), several
properties of the beampattern of an EM vector sensor can be 00 50 100 150
deduced. First, the response of an EM vector sensor in the
direction/polarizatiord,, decreases with an increasefi or
AF'. Second, when/" = = (i.e., at the direction opposite toFig. 3. Three-decibel beamwidth of an EM vector sensor against the polar-
the beam-steer direction) or whek! = 7 (i.e., if the dif- zation differenceA[".

ference in polarizations is the largest possible), an EM vector _ _
sensor does not have any response. Finally, sifiég, 6;) a result, the beampattern will depend only on the separation

attains its maximum if and only @, = 6, the beampattern of " DOA'S). It can be deduced from (6.2) that for a fixex,
an EM vector sensor does not contain the gratingadbe., € 3-dB beamwidth is given by
the side-lobe that is as high as the main-lobe). In contrast, . AF -
the beampatterns for scalar sensors with uniform linear or J 2 €0 <\/§/ o8 5T~ 1)7 if Ay €10, 7/2]
uniform circular_ array geometry contain grating _Iobes _(We will 0, it AT € [r/2, ).
demonstrate this property in the latter part of this section), and
such scalar sensors will not be able to suppress interferentie§ig. 3, we plot the 3-dB beamwidth as a function Af .
arriving in the directions of the grating lobes. This beamwidth decreases gradually fran/18 to 0 if
Fig. 2 shows the polar plot of any cross-section of thdf € [0, w/2]. Beyond this interval (i.e.Af € [r/2, 7)),
beampattern that contains the beam-steer directiomMpr= it is identically zero. This indicates the EM vector sensor’s
0, w/4, 7/2, 3r/4. Note that regardless of the beam-steegxcellent ability in distinguishing signals and interferences that
direction/polarization, the shape of the beampattern is identidwive sufficiently large differences in polarizations.
to that shown in Fig. 2. To further illustrate the performance of an EM vector sensor
Now, we analyze the 3 dB (or half-power) beamwidth of théas well as to facilitate comparisons with other types of
main-lobe. Since the beampattern of an EM vector sensors@nsor arrays to be discussed later), we show in Fig. 4(a) the
dependent on polarization in addition to DOA, we will analyzbeampattern when an EM vector sensor is steered toward the
the 3-dB beamwidth by considering a fixed valuef (as direction (¢r, ¥ r) = (7/2, 0) and an arbitrary polarization
2 . . . _ with A" being fixed at 0. For ease of visualizing the beam-
Such a property is also seen in the acoustic vector sensor, which meas

ure e . .
the acoustic pressure and all the three components of the acoustic parﬁ@jtem variation with r_eSpeCt o a refergnce flxeFi—Qt dB,
velocity induced by acoustic signals [32]. we also show the horizontal plane cutting theaxis at —3

3 dB Beamwidth (deg)

Polarization Difference, Ai (deg)
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Fig. 4. Beampatterns of an EM vector sensor with beam-steer directions v'r) = (x/2, 0). The values ofAf' in (a) and (b) are, respectively,
0 and 7x/12. The —3-dB plane is also shown.

dB. [Regardless of the beam-steer direction, the shape of theated orthogonal dipoles (called a tripole) and the other three
beampattern is identical to that shown in Fig. 4(a), except foo-located orthogonal loops (a dipole measures a component
a shift in position.] In Fig. 4(b), we show the beampatterof the electric field induced by the signals, whereas a loop
for the case where the beam-steer direction is the samenasasures a component of the magnetic field). Such an array
that of Fig. 4(a) but withAf' = 77 /12. [In Fig. 4(a) and (b), is similar to an EM vector sensor in the sense that both
as well as the other figures to be presented subsequently,measure the complete components of electric and magnetic
truncate the value of the beampattern response40 dB if fields induced by EM signals. However, the three dipoles
it is smaller or equal to-40 dB.] and three loops of such an array are spatially displaced,

We remark that since the beampattern of an EM vectahereas those of an EM vector sensor are co-located. Due
sensor is dependent on both DOA and polarization, it is nmt the constraint on the paper length, we shall report only
obvious how to define a side-lobe for this sensor. Howevaer, brief analysis of some advantages and disadvantages of
for a fixed AL, the beampattern is a decreasing functioremoving the spatial co-location characteristics of an EM
of vf [with maximum value at(¢x, ¥r) = (¢r, 1r)]. Vector sensor. The steering vector of the arrag @ontaining
Consequently, there is effectively no side-lobe for a fixel. both DOA and polarization parameters)[#&#)", a(8)]4,

We are now ready to compare the beampattern of amerea(d) = B(¢, 1/)Q(a)h(3) corresponds to the response
EM vector sensor with two types of sensors/arrays. We first three co-located dipolea(8) = d(¢, ¥)B(¢, ¢)Q(a)h(5)
consider arrays of six isotropic scalar sensors that measuogresponds to that of three co-located Ioo?ﬁ;/), %) and
only one component of the electric or magnetic field induceE(¢, %) contain the first and the last three rowsB{¢, ),

Two common sensor configurations are considered: a shespectively, andl(¢, +) is the phase delay between the two
sensor uniform linear array (ULA) lying along theaxis with sensors due to a signal with DO@b, ). We will consider
intersensor spacing equal %2, where A is the wavelength only the case where the coordinates of the sets of (co-located)
of the signal of concern, and a six-sensor uniform circulaipoles and loops are (0, 0, 0) and (1, 07, respectively.
array (UCA) with sensor coordinatgsos n7/3, sin 77/3, An explicit analytical expression for the beampattern in terms
0)A for = = 0,---,5. Note that unlike an EM vector of DOA and polarization is highly complex, and we will
sensor, the shapes of the beampatterns of the ULA and U@#ét attempt to pursue this direction. Instead, we will try to
are dependent on the beam-steer direction. Thus, to analfind out more about the characteristics of the beampattern
the beampatterns, we have conducted simulations for many examining a large number of scenarios with different
different beam-steer directions. An undesirable property of theam-steer directions/polarizations. In this connection, we
beampatterns of the ULA and UCA is that they have gratingliscovered quite a number of scenarios where the beampatterns
lobes. Moreover, many grating-lobes occur at directions thethibit side-lobes having strength greater thaB dB at

are very far from the beam-steer direction. For example, wi&rections that are very far from the beam-steer direction.
plot in Figs. 5 and 6 the beampatterns of, respectively, tAi&o such scenarios occur when the array is steered toward
ULA and UCA, when the arrays are steered (to/2, 0), 8r = (v/2, 0, n/2, w/4) and (v /4, 0, n/2, w/4) with the
(r/2, 7/3), and (7/2, 7/2). In each figure, we also plotvalue of (as, 3) fixed at(x/2, —7/4) (the value of AL for

the —3 dB plane as in Fig. 4. For ULA, we see that théoth scenarios is equal te, which is the largest possible),
beampatterns contain many grating-lobes for all the beam-staad the beampatterns are plotted in Fig. 7(a) and (b), respec-
directions of concern. As for UCA, grating-lobes occur whetively. For Fig. 7(a), there are two side-lobes(gty, vr) =

the array is steered for/2, =/3) and(w/2, 7/2), and a side- [—(7/9)x, 0] and[—(2/9)=, 0], and for Fig. 7(b), there is one
lobe with strength greater than3 dB occurs when the arrayat (¢r, 1) = [-(11/18)x, 0]. On the other hand, there are

is steered to(7/2, 0). many scenarios where such an array outperforms an EM vector

Next we consider an array consisting of two sets of sens@ansor because of better angular resolvability. This is due to
that are spatially displaced, one of which comprises three dbe fact that such an array has a larger array aperture than an
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Fig. 5. (a)-(c) Beampatterns of a six-scalar sensor ULA lying along tiEg. 6. (a)—(c) Same as Fig. 5(a)—(c), except that the array is a six-scalar
y axis with intersensor spacing equal to half-wavelength. The beam-steehsor UCA with sensor coordinate8os 77/3, sin n7/3, 0)A, for
directions(¢r, ¢r) in (a)—(c) are, respectivelyx/2, 0), (x/2, #/3),and 7 = 0, ---, 5.

(w/2,7/2). The —3-dB horizontal plane is also shown in each figure.

EM vector sensor. Of course, the associated shortcominga|nd (_jua!-message _signals were considered., and.the state of
that it occupies a .Iarger spacé physically pcﬁarlzatlon of the mtgrference under. consideration ranged
' from completely polarized to unpolarized. To analyze the
beamformer performance, we first obtained an explicit ex-
VII.  CONCLUSION pression for the SINR of a single-message signal in terms
We have developed a minimum-noise-variance type beaof-the parameters of the signal, interference, and noise. We
former employing an EM vector sensor for one signal amtkduced that the SINR of single-message signal increases
one interference that are uncorrelated. Both single-messagth an increase in the separation between the DOA'’s and/or
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the polarizations for all DOA’s and polarizations (scalar- Lemma A.2: SupposeR,; as defined in (2.3) is invertible.
sensor arrays and a single tripole [22] do not have sudhen
properties). We also deduced that a single EM vector sensor
can suppress an (uncorrelated) interference that has the same
DOA as the signal and distinct polarizations (this is impossible
for scalar sensors regardless of the number of sensors and
the array aperture). In addition, we identified a strategy favhereq; = Q(«;)h(53;), andQ andh are as defined in (2.2)
effectively suppressing the interference, and through the SINIRd ;» and » in (4.2).

expression we derived, we also provided a basis for generatingProof of Lemma A.2:Using Lemma A.1 with W =
dual-message signals of which the two message signals h@yg-2)I,, X = R; ! andY# = I,, we obtain

minimum interference effect on one another.

-1
_ 2
<Ri t+ =) I2> =L +vq,qf

We derived an explicit expression for the SINR of such a 2 -2 o o2 -1
. . . —1 —1
dual-message signal in terms of the parameters of the S|gnagRi t3 I2> > - R, <I2 t5 R )
interference, and noise. Subsequently, we deduced that th ) . ) 1
above-mentioned characteristics for the SINR of a single- =2, <Ri +27,
message signal were also valid for the SINR of a dual-message 2 4 2

signal. We conducted fairly extensive computer simulations,

and the results obtained were in good agreement with thosefostituting the expression d&; as given in (2.3) into the
our analysis. Finally, we have also analyzed the characteristit@t-hand side of the above equation, we have

of the main-lobe and side-lobe of the beampattern of an EM .

vector sensor and demonstrated the advantage of an EM vector < 1, 2 )

sensor over some scalar-sensor arrays. In particular, we have ‘ 0272

shown that the beampattern of an EM vector sensor does not 9 9 -1
. . . 0'2 0'4 o+ o5,
contain grating-lobes. In contrast, the beampatterns of a six- = T, - | "1, 462 q.q” .
. . . . . 2 2 4 2 2 i,cqii
sensor uniform linear array and a six-sensor uniform circular

array have grating-lobes. Moreover, many grating-lobes occur

at directions that are very far from the beam-steer direction.Mow, using Lemma A.1 withtW = ((0* + 07 ,,)/2)I> and

comparison of the beamforming performance of an EM vect®d = Y = o, .q;, we get (after some manipulation)

sensor and an array of one electric and one magnetic vector

sensors being separated at half-wavelength distance was also L2 -1 -

presented. <Ri + ) I2> = pl2 +vq.q;" - u
Our proposed beamformer can be extended easily to handle

multiple sources with diverse polarizations using multiple | amma A.3: Let (¢1, 1) = (0, 0) andp, = 0. Then
vector sensors as receivers. Some possible follow-up studies

ae . lasBa||” = (1 + cos ¢)°
i) investigation of the beamforming performance of a
EM vector sensor for multiple signals and multiple Al
H . H 2 _ 2 2 2
interferences; |ag'az|® = (1 + cos ¢a)” cos™ —=.

i) performance with multiple EM vector sensors;
iii) performance for the signal and interference that are pyof of Lemma A.3:Since(sy, ¥1) = (0, 0) andeps = 0

_ correlated; __itcan be verified thaBy'B; = (1 + cos ¢2)To. Thus
iv) performance when the powers of the electric noise and

magnetic noise at EM vecFor sensors are 'not |F1Ient|cal; |2 B, |2 =hi’ Q¥ (B B,BY¥B,)Q.h,
v) effects of channel depolarization on the signal; o H o~
vi) comparison of an EM vector sensor with other types of =(1+cos ¢2)"hy’ Q" Qihy

EM sensors. = (14 cos ¢2)*.

Next, we have|af’a2|2 = |h{_’Q{_’(B{_’B2)Q2h2|2 =
APPENDIX A (1 + cos ¢2)?h¥ Q¥ Qshy|>. By Lemma 1, we obtain
PROOF OF THEOREM 1 Q¥ Qohs|? = cos?(A}3/2), and thus, the above equation

We first state a lemma and then establish two lemmas. reduces to

Lemma A.1—Golub and Van Loan [33.et W e C*** Al
andX,Y € €*, and suppos@V and (I; + YA W~1X) lalas|? = (1 + cos ¢2)? cos? <_2> -
are invertible. Then 2

(W +XYH)~! Proof of Theorem 1:We will consider two cases that cover
. . Lo L Hxr 1 all possible scenarios: a)% . = 0 (i.e., the interference is CP)
=W WXL+ YW X)) YW and b)o? , # 0 (i.e., the interference is PP or UP).
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Fig. 7. (a) and (b) Beampatterns of two sets of sensors, one comprising three co-located dipoles and the other three co-located loops. Thesdosensors li
thex axis with intersensor spacing equal to half-wavelength. The beam-steer directions/polarizations in (a) and (b) are, regpeetivety2. 0, /2, 7/4)
and 0y = (n/4.0, /2, 7/4), and Al = =

Case a)O'i . = 0: By Lemma 2, we can express the SINRis a 2 x 2 matrix such thaCC¥ = R;, we get

given in (2.8) as . . . 1
SINR, =a§a§<—2 I — — Bic<12 + = CHBf{BiC>
(o2 (o2 (o2

SINR, =c2al(R, — JQaSaH)_laS
HpH
gaf(a aal 4 0% a,. x C"B;j )as
—1
1 1 1
. i :agaf —2:[6——4BZ<RZ_1+—2B£{BZ>
Using Lemma A.1 withW = ¢%Is and X =Y = o, .a;, o} o o
we obtain
X Bf)as
-1
2 1 2
9 H 203 <—2 - —4a£{B7 <Rz_1 + —212> Bf{ag>
all 1 T, A8 o o o
SINR —U ag - IG - 2 Ag
g
< ffai) Now, substituting the inverse 6R; ' +(2/0?)I,) established
in Lemma A.2 and after some manipulation, we have
2 H,_ |2
:052 <32 o 20—i7 c2|a8 aZ|2 ) SINR 2 2 0—12, u”a;—’BZHQ
of oo +207,) » =% ﬁ‘wﬂgu)
lalay[?
By Lemma A.3,Ja a;|?> = (1+cos 7)? cos?(A?/2), and thus (o2 + o} 11)(20 +ot407,) )
As Since, by Lemma A.3,a’B;||> = (1 + cosv)? and
5 07 (1+cosy)? cos? L |ala;]? = (1 + cos v)? cos?(A#/2), we obtain
SINR, = 02| = — 2 (A1)
a2 o2(0? + 207 ) ) )
’ SR _ 2| 2 cRulltcosy)
s =% | 52 202(02 + ai )
which is equal to the expression of SINBiven in Theorem ) , g A
1 wheno?, = 0. 77 (14 cos 7)* cos™ =
Case b)o— #0: By Lemma 2, we can express SINR (02402 Y202 _+02+02) | (A-2)
given in (2. 8) as o o
Combining (A.1) for Case a) and (A.2) for Case b), we obtain
SINR, =o2a H(R _O_QaSaH)—laS Theorem 1. [ ]
=o2a(B,R;Bf +0%1)a,.

APPENDIX B
PrROOF OF COROLLARIES 1-5 OF THEOREM 1

Since 07, # 0, the matrixR; is invertible. Now, using  Corollary 1 follows from the fact thatos?(A7/2) is a
Lemma Al with W = oI, X = Y = B,C, whereC decreasing function oAz, and Corollary 2 follows from the
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fact that(1+ cos v)? is a decreasing function of. The proof Case a)ai « =0: By Lemma 2, we can express SINR
of Corollary 3 is quite straightforward. Corollary 4 followsgiven in (2.9) as
from the fact that(1 + cos v)? and cos?(A?/2) equals 0 at,

respectively,y = = and A = 7. SINRy, 1 =0 1241 (Ra — 07 180,185 1)~ a1
Next, we shall establish Corollary 5. Consider a fixed DOA =05 1al (0] yaq 2all, + B;R;Bf
separationy. Sinceo?, o2, + afc, and 02 are fixed, the +0%Tg) tay
variables that affect SINRare o7, (or ¢7,.) and A?. By ) 0 all
Corollary 1 of Theorem 1, SINRfor a glveno—% . Will attain =02 | [(a(u a;) <0d,2 ) ) < di{2>
its minimum value . 0 i,c a;
; 2 1 2 2
SINR;nm(OiQ u) :ag ~ ( + COSQW) + o IG:| ad, 1.
’ o2 (0®+07,)
o2 o2 Using Lemma Al withw = ¢%Ig and X = Y =
T, U 2, C _ {(oa, 0 .
X <20_2 207, ¥ o7 +03u>> (ag,2 a;)C, whereC = (742 Um), we obtain
2092 2 1 1
_ 2 3 _ (1+COS ’Y) (20'i,c+0'i,u) SlNRd71 :gg ladHl|:_QIG_ —4(ad72 aZ)C
Is\ > 2 2 3 il o
o 207 40407, .
(B.l) <IQ + — CH < aH )(ad72 aJC)
at A? = 0. Now, it remains to be shown that SINR'(c7 ) aH ’
attains its minimum value at; , = 0. Sincev, o3, o7 , +07 ., X C”( <z )} aq,1
and % are fixed, it can be verified that the second term in g 1
the bracket of the above equation(1 + cos v)*(207 . + —— 0
' ' ' ' ; 1 1 Td,2
o? /207 407 + 022 ) is an increasing function of? .. 203,135,1 ST— —(aus a) .
Therefore SINR™(o7 ) is an mcreasmg function OrfrZ w a a A
and hence, the minimum of SINR (o7 ) is attained when e
0}, =0. [ ] -1
n i 2 aZQai aZQ
APPENDIX C o2 \aa, 5 9 ol )| 2t

PROOF OF THEOREM 2

We first establish a lemma. _

Lemma C.1:Let (¢1, ¢1) = (0,0) and ¢, = 0. Then, Sinceaf a,; =2 andaj,a. 1 = 0 (by Lemma C.1), we
we have I)|ad ,a;|? = (1 + cos )2 sin2(Ag’l/2), and i) if have

A2? = 7, thenall ,a, , = 0, andalf ,B;Bfa, , = 0. 2 1 0
4 ’ ) ’ SINRy 1 =03 1| — — — (0 a 1a,))G
Proof of Lemma C.1:Since BY,B; = 1 + Ra1=9a1 <o2 (0 ac,a) <af{ad, 1 ))
cos v)*I,, it can be deduced that|adH?28i|2 = o, 2 1 o
(14 cos v)*h} ,QJ ,Q;hy|*. By Lemma 1, we obtain TOd1\ g2 T 1 4, 18i980 Ad1
A%2 _ o (2 1 g o
|ad »a;|? = (1 + cos 7)? cos? ”T (C.1) =%, <02 v gllag, 1al (C.2)
Now, sinceAjf = 7 andp; is a point on the arc joining Where
the two pointspy,» and py 1, we haveAd? = 7 — AP L L2 1 g N\
Therefore, (C.1) can be rewritten as G- 054 oF oF 4,27
Afi? ! B i al ay o i 3
|a5{2ai|2 = (1+cos v)? sin® —¢ o2 v " 2 o?

Next, sinceAj’f — . we obtain from Lemma 1 thatdI{2 andg is the second-row second-column entry@f It can be

’ shown that
Q//2Qa,1hy 1 = 0. Therefore,a/ yay 1 = 2b7, Q) ,Qu 1 Yy s ,
hy; = 0. Moreover, since BY,B; = (1 + g= 070y (07 + 20y 5) (C.3)
cos 7)’I;, we obtain a},B:B/fa;, = h},Qf, (02 + 207 y)(02 4207 ) — 0] ,07F |al i '
(Bi;B;BI/By2)Qa,1hs1 = (1 + cos)’hf,Qf, 0l
Qg 1hy 1 = 0. m Since by Lemma A.3ja a;|* = (1+cos 7)? cos?(A]"7/2)

Proof of Theorem 2:We shall only establish the expres-and by Lemma C. 1Lad 2a2|2 (14 cos 7)? sin2(A%1/2),
sion of SINR; ; since the expression of SINR can be we obtain from (C.2) and (C.3) that shown in (C.4), shown at
obtained with the same technique. We consider two cases tthegt bottom of the next page, which is equal to the expression
cover all possible scenarios: aj , = 0, and b)o? , # 0. of SINRy, 1 given in Theorem 2 when; , = 0.
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Case b)o? , #0: By Lemma 2, we can express SINR d = ( /o )BHad 5, and D = (R + (2/0?)1,). Then,
given in (2. 9) as =(3 ) and it can be verified that

S|NR(171 :O’ilaf’l(Rd—0371ad7ladH’1)71ad71 i ——dHD 1
= 0'37 1a5{1(03 28y, QadHQ + BZRZBff H = 1 Ji 61
+ 0—2:[6) ad 1 —a D_ld D_l + 6_1 D_]‘C].C].I—ID_l
2 0 . . .
203,135{1 [0216 + (ad,zBi)<gd’2 ;:2> whereé; is as defined in (4.3). Therefore, we have
2x1 7 - 1
all \7-! H=D"'+ 5 D~ !'dd?*D.
d,2
(5i)] =
B; Now, substituting the expression db~' established in

Since 07, # 0, the matrix R; is invertible. Now, using Lemma A.2 intoH and using the fact that}/ ,B;B}'ay,1 = 0

Lemma Al wWithW = o2 andX = Y = (ag 2 B;)C established in Lemma C.1, we obtain (after some manipula-
whereC is a 3 x 3 matrix such thalCC# = (gj‘jl 02, tion)

i 2 1
we obtain SINRy,1 =03 (; - <u||a5{ Bill* +vlag

1 1
_ 2 H .
S'NR(171 —adyladjl |:_O'2 IG — s (ad72 BZ)C 1/2 H o 2H 12
+ s, lag 12a:]"|ag 2al .

H -1
H
<I3 +5C <BH )(adﬂ Bi)C) Finally, substituting the expressions dfalf,B;||> and
H |al/,a;|* established in Lemma A.3 and that ¢f},a;|?
CH(B}J )}ad 1 established in Lemma C.1, we obtain (after some manipu-
@ lation)
1 1 2 (1+ 2 AG!
_ 2 _H cos i
_Od7lad71 ?IG_F(a(LQ B7) SINRd,l 20371[§_(0—74w<u+1/ C082 5
1 -1 12 . d
o 012 1 (all, + Py (14 cos v)? sin? Ai’lﬂ. (C.5)
X d,2 ) B;_, (ad,2 Bz) !
0251 szl 7 i Combining (C.4) for Case a) and (C.5) for Case b), we
" obtain the expression of SINR, in Theorem 2. [ ]
a4, 2
. <Bf1> d,1 APPENDIX D
= PROOF OF COROLLARIES 1-5 OF THEOREM 2
1 1 . . .
:aﬁilagfl(—QIG— — (aa,2 Bi)H<adI§ ))adl We first establish Corollary 1. Since # =, we have
e e B; (1 + cos 7)? # 0. Therefore, to show that SINR is an
where increasing function oA !, it suffices to show that
1 2 1 4 -1 A1 2
- 037 , 2 2 o Bi ' v cos? ”2 + 4;/46 (14 cos 7)? sin® A%!
1 2 . . . . .
—2Bf’ad72 R;l + 5D is a decreasing function czﬁf’l since p is independent of
. = 7 7 = Af’l. The above expression can be rewritten as
Smcead’ladyl = 2 and by Lemma C.lad7 2941 = 0, we gl
obtain cos? =5 (0?07 4203 5) — 0 pu(1+ cos 7))
SINRe1 =02 (2 - Lo a#Bym(,,° a1 ©.1)
1 =041 0.2 0.4 d, 1% BZHad71 f(Az )
2 1 . Sy i 41 gi
. <_2 3 jaleiHBf{ad,l) WhereJ;(A ) is a function of A"+ given by
? g g ? 1
) FAPT) =020 + 203 ) — 03 5 (1 + v)(1 + cos 7)?
where H € €**? is a submatrix ofH with the first row , , o, A%!
and the first column being removed. Let= 1/03 , +2/02, +0g,97(1 + cos ) cos
APt
o3, 0} (0% + 207 ,)(1 + cos 7)? cos® —

SINRy 1 = (C.4)

o2 B 4,1
(o2 4+ 2037 2)(0? + 20376) — 0372026(1 + cos ¥)? gin? ——
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Since v(0?(0® + 2073 ,) — 05 op(1 4 cos v)?) is positive  [3]
and independent ofA%!, it suffices to establish that
cos?(A%1/2)/f(A%1) is a decreasing function ofA®!.  [4]

Now, let us consideros?(e;/2)/f(e1) — cos?(e2/2)/ f(e2),

wheree; > 3 € [0, w]. Then, it can be shown that [5]

€2

2
)

€1
cos? = cos?

fla)  fle
(Cos2 % — cos? %2) x (o%(a? + 20372)
— 0 2+ )L +cos 7)%)/(f(e1) f(e2)). (D-2)

Since(u+v) = o*(07 , 4207 .)/2(0° 407 4207 ) < 07/2,

it can be shown thaf(e,), f(e2) > 0, ando?(o? + 207 ,) —
03 o(1n +)(1 4 cos v)* > 0. Consequently, we obtain from
(D.2) thatcos®(e;1/2)/f(e1) — cos®(e2/2)/f(e2) < 0 since
€1 > . Therefore,cos2(A%/2)/f(A%") is a decreasing
function of A%, and hence, SINR, is an increasing function [10]
of AL, Similarly, it can be shown that SINR is an
increasing function oﬁ;“. This establishes Corollary 1.

Next, Corollary 2 follows directly from the fact thdt +
cos 7)? is a decreasing function of. On the other hand,
Corollary 3 is quite obvious. Corollary 4 follows from the
fact that (1 + cos v)? equal to 0 wheny = 7 and that
p, cos?(A%*/2), and sin? A%* are all equal to 0 when [13]
APY = 1 ando?, =0 for k =1, 2.

Next, we shall establish Corollary 5. Consider a fixed DOA
separationy. Sinces? ,, 07 5, 07,407 ., ando? are fixed, the [14]
variables that affect SINR, areo? , (or 02 ) andA?*. By 5]
Corollary 1 of Theorem 2, for a givenz «r SINRy  attains
its minimum atA%* = 0, and moreover, the expression of1g]
SINRy, & is

(6]

(7]

(8]

El

[11]

[12]

: 2 (L+cosy)?(u+v) (17]
SINRI (07 ) =0 x| — —
d,k( z,u) d,k<02 p [18]
2 3 B (1 + cos 7)2(2026 + Ufu)
d,k\ 2 207+ 0% +a?, [29]
D.3
(D.3) 201
Now, it remains to be shown that Slrg]ig(a;{ ) attains its

minimum atoi « = 0. Note that the expression of (D.3) is a[21]
constant multiple of that of (B.1). Thus, using the technique
in the proof of the Corollary 5 of Theorem 1, we can shov&z]
that SINR;, (07 ,) attains its minimum when? , =0. =

u
(23]
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