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MUSICAL SYNTHESIS

The many music synthesizers and keyboards
available today from manufacturers such as
Yamaha can generate musical sounds which are
reasonably close to that of musical instruments
such as the clarinet and trumpet.

The generation or synthesis of musical sounds
aims to reproduce as closely as possible the
harmonic structure of the instrument being
imitated.
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MUSIC AND VIBRATIONS

All musical notes are the result of vibrations i.e.
an object must vibrate to make the air vibrate,
giving rise to a sound wave which reaches our
ears. We are able to hear sound vibrations from
about 20Hz to 20,000Hz.

Musical instruments can give rise to a sound wave
by:

• Scraping a stretched string and causing it to
vibrate i.e. string instruments.

• Blowing into a tube and causing the air
column to vibrate - wind instruments.

• Hitting a solid object and causing it to
vibrate - percussion instruments.

The nature of the vibration gives each instrument
its particular colour or timbre.
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TIMBRE AND HARMONICS

The timbre can be shown to be due to the
harmonics of the musical sound produced.

For example, a clarinet playing the note A4 will
have a series of harmonics with

1. The first harmonic or fundamental at 440
Hz.

2. The second harmonic at double this
frequency i.e. 880 Hz.

3. The third harmonic at three times i.e. 1320
nHz, and so on.

It is the relative strength of the harmonics which
gives the clarinet its characteristic sound.

A trumpet which is playing the same note will
also have its fundamental at 440 Hz, but the
relative strength of its harmonics will be different
from the clarinet. This gives the trumpet sound a
different colour or timbre from the clarinet.
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6 Clarinet harmonics
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6 Trumpet harmonics

f 2f 3f 4f 5f 6f 7f 8f 9f 10f

harmonic
amplitude

frequency

f = fundamental, 2f = 1st harmonic, 3f = 2nd harmonic etc
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TYPES OF MUSICAL SYNTHESIS

• Additive synthesis: The required
harmonics are generated separately and
added together.

• Subtractive synthesis: A sound rich in
harmonics (e.g. white noise) is the starting
point and filters are used to subtract the
undesired harmonics.

• FM synthesis: (invented by John Chowning
of Stanford) Two or more waveforms are
used, one modulating the frequency of the
other, to generate a rich harmonic structure.
To obtain the desired harmonics, the
frequencies and amplitudes of the two
waveforms must be optimized.

• Sampling/wavetable synthesis: The
waveform of an actual musical instrument is
sampled and its shape stored in memory as a
set of wavetables.
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FM AND RELATED SYNTHESIS
TECHNIQUES

In (Frequency Modulation) FM synthesis, the
frequency of a sinusoidal carrier wave is
modulated by another sinusoidal waveform to give
a complex waveform which is rich in harmonics.

By suitable choice of the frequencies and degree
of modulation, the harmonic structure of the
resultant FM waveform can be made to
approximate to that of a desired waveform, such
as that of a musical instrument.

We consider a carrier waveform of circular
frequency ωc which is frequency modulated by a
sinusoidal waveform of x(t) of circular frequency
ωm and amplitude Am:

x(t) = Amcos(ωmt)
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SYNTHESIS EQUATION FOR FM

The instantaneous frequency f of the carrier wave
thus becomes:

f = fc + Amcos(ωmt)

The resultant carrier wave is therefore

x(t) = Acsin(ωc + 2πKf

∫ t

0

Amcos(ωmt′)dt′)

i.e.

x(t) = Acsin(ωct +
2πKfAm

ωm
sin(ωmt))

If we define the degree of modulation by the
modulation index, I as

I =
2πKfAm

ωm
=

AmKf

fm

we have the basic synthesis equation for FM :

x(t) = A sin[ωc + I sin(ωmt)]
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BESSEL FUNCTIONS

x(t) can be expressed as a sum of sinusoids of
frequency and amplitude given by

x(t) = A
∞∑

n=−∞
Jn(I) sin(ωc + nωm)t

where Jn(I) are Bessel Functions.

The FM spectrum thus consists of a central
carrier frequency with symmetrical harmonics
around it.

-
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REFLECTED HARMONICS

Looking at a typical FM spectrum, as I increases,
the number of non-zero harmonics increases. The
spectral envelope is mainly dependent on I, but
the frequencies of the harmonics and the intervals
between them are determined by the ωc and ωm.

For example, with I = 1.0, ωc = 200 and
ωm = 200, we obtain a resulting FM spectrum
with seven harmonics. The harmonics of negative
frequency are reflected from the zero to give
harmonics with opposite phase.

It may happen that some of the reflected
harmonics coincide with the unreflected ones. In
this example, the -200 Hz harmonic coincides
with the +200 Hz harmonic, and the -400 Hz
harmonic conicides with the +400 Hz harmonic.

The resultant FM spectrum has five harmonics
with the +200 Hz and +400 Hz harmonics
reduced in amplitude after reflection.
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HARMONICITY

If the ratio of the carrier frequency and
modulating frequency:

ωc

ωm
=

Rc

Rm

and there is a minimum non-zero |Rc − nRm| = 1
where n = 1, 2, 3, 4...

then a harmonic spectrum will be obtained where
the harmonics are multiples a fundamental
frequency.

Typical examples of such Rc

Rm
are:

1
2 , 1

3 , 1
4 , 1

5 ...

2
3 , 3

4 , 4
5 , 6

7 , 3
2 , 4

3 , 5
2 etc

On the other hand if the minimum non-zero
|Rc − nRm| 6= 1 where n = 1, 2, 3, 4..., then the
harmonics will not be multiples of a fundamental
frequency.
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VARIANTS OF FM SYNTHESIS

Asymmetrical FM or AFM synthesis

A parameter rn is inserted thus:

x(t) = A
∞∑

n=−∞
rnJn(I) sin(ωc + nωm)t

which gives harmonics which are NOT
symmetrical about the carrier frequency.

Hence the harmonics can be more complex and
more like actual harmonics of real instruments.

However the synthesis equation is more complex:

xc(t) = A exp[
I

2
(r − 1

r
) cos(ωmt)]

sin[ωct +
I

2
(r +

1
r
) sin(ωmt)]

and hence requires more computation. If r = 1.0,
AFM is equivalent to FM.
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DOUBLE FREQUENCY MODULATION

Instead of one frequency being the carrier and the
other the modulator, in double frequency
modulation (DFM) they have equal status
thus:

x(t) = A sin[I1 sin(ω1t) + I2 sin(ω2t)]

where I1 and I2 are the modulation indices of the
two frequencies and ω1 and ω2 are their respective
frequencies.

We can show that

x(t) =
∑

p

∑
q

Jp(I1)Jq(I2) sin(pω1t + qω2t)

where p and q are integers of different parity.

DFM thus generates harmonics of angular
frequency pω1 + qω2. It also generates many more
significant harmonics than FM, due to the
harmonics depending on product of the two
Bessel functions instead of the single Bessel
function of FM.
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COMPARISON OF AFM AND DFM

DFM is able to generate harmonics of greater
complexity than FM, but with much less
computational load than AFM.

In AFM there are

• two sine functions

• one cosine function

• one exponential function

• five multiplication

• two divisions

• two additions

• one subtraction.

In DFM we have only

• three sine functions

• two multiplications

• one addition
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OPTIMISATION OF FM PARAMETERS

For FM synthesis, the parameters for the carrier
and modulator frequencies i.e.

ωc, ωm and I

have to be optimized for the closest fit to the
harmonics of the instrument to be imitated.

For AFM synthesis, the parameters

ωc, ωm, I and r

have to be optimized.

For DFM synthesis, the parameters for the two
frequencies,

I1, I2, ω1 and ω2

have to be optimized.

This has normally been done by trial and error,
which is a tedious and lengthy process.
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FM, AFM, DFM SOLUTION SPACES

For FM, AFM, and DFM synthesis, the relevant
parameters which determine the spectrum of the
synthesized waveform can be evaluated by a
fitness parameter.

The smaller the fitness for a given set of
parameters, the closer is the resultant spectrum
to the desired one.

The fitness can be plotted as a function of the
relevant parameters in a solution space. The
lowest valley of this space determines the set of
parameters which generate the waveform having a
spectrum most closely resembling that of the
musical instrument to be synthesized.

The objective of optimization is thus to find the
set of parameters which gives the best fitness
value.
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REAL MUSICAL INSTRUMENT
SAMPLES

The real musical instrument samples were
obtained from the standard McGill University
Master Samples (MUMS) CD. This CD
contains recordings of musical instruments playing
notes at standard frequencies such as A=440 Hz.

Selected recordings were analyzed by dividing
each note into time frames of 31.25 milliseconds.
This time frame was then sampled and fed into a
1024 point FFT program.

For a single time frame, the plot of the amplitudes
of the harmonics versus their frequency shows the
envelope or shape of the harmonic spectrum.

By plotting the harmonic amplitudes for all the
time frames successively, it is possible to obtain a
plot of the spectrum as it changes through the
duration of the musical note.
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FM SOLUTION SPACE

Having obtained a plot of the harmonics for a
particular time frame, we can then attempt to
synthesize the musical instrument tone using FM,
AFM or DFM synthesis to replicate the harmonic
spectrum as closely as possible.

For example, for FM synthesis, we can vary three
parameters: ωc, ωm and I. For convenience, we
define fc = ωc

2π and fm = ωm

2π .

In practice, for a tone at A=440 Hz, we fix
fc = 440 and fm = 440. We then need to find the
value of I for which the fitness of the synthesized
note is at an optimum value.

The nature of the optimization problem can be
more clearly shown by plotting the value of the
fitness for a range of values of I. For example, for
the trumpet tone, it can be seen from such a plot
that the minimum fitness occurs at I = 4.65.
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AFM AND DFM SOLUTION SPACES

Similar solution spaces can be plotted for AFM
and DFM synthesis.

We consider the same trumpet tone at A = 440
Hz.

For AFM synthesis, we can fix f1 = 440 and
f2 = 880. The solution space is then a plot of the
fitness value for varying I and r. The minimum
fitness occurs at I = 0.55 and r = 2.10.

Likewise, for DFM synthesis, we fix f1 = 440 and
f2 = 880 to plot the fitness against I1 and I2.
From the solution space, the minimum fitness
occurs at I1 = 3.05 and I2 = 1.40

The FM, AFM and DFM all employ a single
operator. By employing two or more operators, it
is possible to obtain solution spaces with
minimum fitness of even lower values.
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SOLUTION SPACES FOR THE VIOLIN

For comparison we have also plotted solution
spaces for the violin for FM, AFM and DFM (for
single operators).

FM synthesis:

fc = fm = 440

Minimum fitness occurs at I = 0.8

AFM synthesis:

fc = fm = 440

Minimum fitness occurs at I = 0.1 and r = 0.51

DFM synthesis:

f1 = 440 and f2 = 880

Minimum fitness occurs at I1 = 1.45 and
I2 = 0.65
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OPTIMIZATION TECHNIQUES

It is difficult to do obtain the best set of
parameters analytically, and traditionally this has
been done manually, which is a tedious and
lengthy process.

We have speeded up the optimization process
considerably by searching the solution space for
the optimum set of parameters using various
optimization techniques to search the solution
space:

• Genetic Algorithm

• Simulated Annealing

• Combination of genetic algorithm and
simulated annealing: Genetic Annealing

• Tree Evolution Algorithm

This has resulted not only in considerable
speeding up, but in obtaining more accurate
parameters i.e. better optimized harmonics and
waveforms synthesized.
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GENETIC ALGORITHM (GA)

By starting with an initial set of points randomly
spread in solution space, the genetic algorithm
processes each ”generation” of points using a
technique similar to that in natural selection to
arrive at solutions which are better than the
previous generation.

The genetic algorithm consists of 4 major
processes:

1. Recruitment process to form initial
population.

2. Selection processes to select fittest members
of population.

3. Crossover process on selected population;
pairs of selected individuals to produce
offspring for the next generation.

4. Mutation process to produce occasional
changes in population.
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SIMULATED ANNEALING

This is a probabilistic optimization algorithm
based on annealing process in solids.

In annealing, a solid in a disordered state at a
high temperature is allowed to cool down to a
highly ordered state in stages, each time lowering
its energy state.

For a given state c with an energy E(c), the
probability of its being in that state is given by
the Boltzmann distribution:

B(c) =
1

Z(T )
exp(

E(c)
kBT

)

where T is the temperature, kB is the Boltzmann
constant and Z(T ) is the partition function
defined by

Z(T ) =
∑
allc

exp(
E(c)
kBT

)
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STATE TRANSITION

When we have a transition on cooling from a
state ct−1 to the next state ct, whether the new
state is accepted to replace the previous state
depends on the ratio P :

P =
B(ct)

B(ct−1)

P = exp(
−∂E

kBT
)

where ∂E is the difference between the two
energy states.

Hence if the new state has a lower energy than
the previous state, it will be accepted with a
probability of one, while if it is higher, the
probability is determined by the difference in
energies.

25



SIMULATED ANNEALING PROCESS

The simulated annealing process starts with an
initial state or position in the solution space:

1. Choose a sequence (Tk, tk) starting with
k = 0 and an initial state.

2. Perturb this state to a neighbouring state.

3. Compare the energy of the new state with the
old state. If the new state Has lower energy,
keep it. Otherwise it is kept only in
accordance with Probability defined above
using the Boltzmann distribution.

4. Repeat 2 and 3 tk times.

5. Increase k by one and repeat steps 2,3 and 4
K times

At the end of the process, we arrive at a final
cooled state at temperature Tk for which the
energy is in the lowest possible state.
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GA AND SIMULATED ANNEALING
COMPARED

The genetic algorithm is able to search the whole
of the solution space quite effectively, but is less
good at converging to an optimum solution.

The simulated annealing algorithm is good at
converging to a minimum once it finds one, but is
less good at searching the entire solution space.

The dependence of the probability function on
the temperature makes it less likely that the
search can move from a less optimum minimum
over a large barrier to a better minimum as the
temperature is lowered.
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GENETIC ANNEALING ALGORITHM
(GAA)

The Genetic Annealing algorithm combines the
best features of the genetic algorithm with
simulated annealing, using the Genetic Algorithm
as a basis.

Its main feature is the Anneal Cross crossover
process in which one parent is the fittest
individual in the population and is mated with
another parent selected randomly. The offspring
will replace the parents with a simulated
annealing-like algorithm: they replace the parents
if they are fitter, and if not, only according to a
probability determined by the Boltzmann
function.

This ensures that the solutions are still able, like
the Genetic Algorithm, to explore the solution
space, but that they converge rapidly once a
minimum is found.
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GAA PROCESS

1. Recruitment process to set up a set of initial
states.

2. Choose a sequence (Tk, tk) starting with
k = 0 and select the best state.

3. Do crossover of this state with a random
partner.

4. Compare the energy of the offspring with the
fittest parent and keep it in accordance with
the simulated annealing. algorithm.

5. Repeat 2 and 3 tk times.

6. Increase k by one, select new random partner
and repeat steps 2,3 and 4 K times.

In effect, a complete simulated annealing process
is incorporated into the crossover process of the
genetic algorithm. At the end of the process, we
arrive at a final cooled state at temperature Tk for
which the energy is in the lowest possible state.
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COMPARISON OF GAA AND GA FOR
DFM

GAA and GA were used to optimize the DFM
parameters of a number of synthesized tones of
real instruments. Using the real instrument
recordings on the standard McGill University
Master Samples (MUMS) CD, the harmonics of
the sampled waveforms were analyzed using FFT.

Using a one-operator DFM algorithm, the ωc and
ωm were kept fixed while the Ic and Im were
varied.

For each instrument, the solution space was
plotted so that the actual optimum minumum
could be found.

GAA and GA were then applied to the DFM
parameters to obtain the closest set of parameters
to the optimum values.
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GAA AND GA COMPARISON RESULTS

Minimum GAA

Instrument I1 I2 Fitness I1 I2

Violin 1.45 0.65 0.260 1.46 0.66

Saxophone 4.95 1.35 0.533 4.99 1.37

Piano 0.65 0.40 0.011 0.60 0.39

Oboe 3.50 1.50 0.406 3.40 1.54

Trumpet 3.05 1.40 0.312 3.07 1.38

Minimum GA

Instrument I1 I2 Fitness I1 I2

Violin 1.45 0.65 0.306 0.88 0.46

Saxophone 4.95 1.35 0.557 5.01 1.45

Piano 0.65 0.40 0.050 1.03 0.53

Oboe 3.50 1.50 0.457 3.57 1.34

Trumpet 3.05 1.40 0.331 2.22 1.82
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TWO OPERATOR DFM

We define one DFM operator as:

x(t) = A sin[I1 sin(ω1t) + I2 sin(ω2t)]

One or more DFM operators may be used to
synthesize an instrument.

For two DFM operators, A and B, we may weight
the operators accordingly with the weights WA

and WB before adding the two operators together
to obtain the resultant waveform X(t):

X(t) = WA sin[I1A sin(ω1A) + I2A sin(ω2A)]

+ WB sin[I1B sin(ω1B) + I2B sin(ω2B)]

This can be extended to three or more DFM
operators.
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DFM OPERATOR A  
AmpA = 0.648809  
IndexA1               = 2.605  
FreqA1 = 660 Hz 
IndexA2 = 0.097  
FreqA2 = 880 Hz  

DFM OPERATOR B 
AmpB                   = 1.849750 
IndexB1 = 1.437 
FreqB1 = 440 Hz  
IndexB2 = 0.037 
FreqB2 = 220 Hz 
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Classical Oboe. DFM parameters estimated by the genetic algorithm. 
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Classical Oboe. DFM parameters estimated by the genetic annealing algorithm. 
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Trumpet. DFM parameters estimated by the genetic algorithm. 
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Trumpet. DFM parameters estimated by the genetic annealing algorithm. 



COMPARISON OF TWO OPERATOR
FM, AFM AND DFM

Though Yamaha’s famous DX7 synthesizer is
described as using 6 operator FM synthesis, one
carrier and one modulating waveform are counted
by Yamaha as 2 operators, hence it is 3 operator
synthesis in our terminology.

Using GAA to optimize 2 operator FM, AFM and
DFM synthesis for a number of instruments gave
the following results:

Instrument FM AFM DFM

Trumpet 0.001426 0.000935 0.000658

Saxophone 0.001061 0.000831 0.000280

Oboe 0.001894 0.000887 0.001904

Piano 0.000440 0.000112 0.000088

Violin 0.003970 0.005517 0.002895

Cornet 0.003980 0.002886 0.004440
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DYNAMIC SYNTHESIS AND
RECYCLING

In order to synthesize dynamic sounds, Each set
of optimum parameters for a time frame is
recycled as the initial set of parameters for the
recruitment phase for the next time frame. As the
spectrum does not vary much from the last time
frame, this enables the next time frame to start
with a set of near-optimized parameters.

This enables the dynamic sound spectrum to be
synthesized very efficiently.

As the GAA process is very fast, typically about
7 seconds for the initial time frame and about 2
seconds for each subsequent time frame, it is
conceivable that with faster computers the
synthesis process could proceed in real time.

DFM could then be used as a highly efficient
method of data compression for the storage and
transmission of the synthesized waveform, as only
the DFM parameters need be stored or
transmitted.
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TREE EVOLUTION ALGORITHM

We have proposed a new algorithm named Tree
Evolution Algorithm (TEA) based on GAA,
which searches the solution space more
thoroughly than GAA.

• TEA searches each local minimum separately
by splitting the population into several parts.

• Each part forms a new population called a
species and evolves in isolation by focusing on
the closest local minimum through a
GAA-like process independently.

• The parents for each GAA crossover are
chosen only from the same group of
individual, analogous to nature in that only
organisms of the same species can mate.

• The crossover process of GAA is modified in
order to restrict the offspring to the same
species as their parents.

• The overall best local solution is selected.

35



VIBRATO IN STRING INSTRUMENTS

Musical instruments may have an oscillation of
their amplitude and frequency known as vibrato
which is part of the performer’s technique
imposed on the basic tone of the instrument.

We have initiated a study of the phenomenon of
vibrato in the violin and other string instruments.

We have obtained the Time-Varying Spectrum
(TVS) of the dynamic violin tone by employing
an 2048 point FFT to extract the peaks of the
harmonics of the dynamic tone.

Because of the vibrato, each peak was broader
than for a tone without vibrato. By assuming
that the energy under each peak is approximately
constant, and that the actual spectrum consists of
time-varying delta peaks, we can obtain the
equivalent amplitude of each delta peak.
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TIME VARYING SPECTRUM (TVS)

The TVS of a tone can be split into 2 parts:

• The Time Varying Amplitude (TVA),
the variation of the amplitude.

• The Time Varying Frequency (TVF), the
variation of the frequency.

The TVA in turn can be split with a low-pass
filter into:

• The Time Varying Principal Amplitude
(TVPA), which is the non-vibrato part of
the amplitude variation.

• The Time Varying Amplitude
Modulation (TVAM), which is due to the
vibrato.

Likewise the TVF can be split into:

• The Time Varying Principal Frequency
(TVPF).

• The Time Varying Frequency
Modulation (TVFM).
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Fig. 1.1
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Fig. 1.2
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Fig. 7.1
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Fig. 7.2
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Fig. 8.1
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Fig. 8.2
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ADDITIVE SYNTHESIS OF VIBRATO

We have

TVS = TVA + TVF where
TVA = TVPA + TVAM and
TVF = TVPF + TVFM.

We have chosen to use such an additive model for
the vibrato because the information extracted
through the filter is additive and such a model
provides great flexibility in analysis and simplicity
in the real time synthesis of the vibrato.

The maximum average excursion of the for the
violin and the other string instruments analyzed
is about 3.4Hz to 4.0Hz for A=440 HGz, and the
major vibrato rate is about 5.5Hz to 5.9Hz.

We synthesized a vibrato tone by adding the
synthesized principal spectrum and the
synthesized modulation spectrum. The
synthesized vibrato tone was very close to the
original real violin tone with vibrato.

BT/26.04.2001
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