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A method of digital sound synthesis, double frequency modulation (DFM), is defined in
terms of two modulating frequencies. Its spectral equation is derived and the harmonic
spacing shown to be dependent on the ratio of the two frequencies. The real-time generation
of musical sounds by DFM is demonstrated. DFM offers superior control of harmonic
envelopes than simple FM, but with less computational load than asymmetrical frequency
modulation (AFM).

0 INTRODUCTION A single FM process involving one carrier and one
modulator frequency is known as an FM operator. Multi-

The application of frequency modulation (FM) to the ple FM operators may be combined or cascaded to pro-
synthesis of complex sounds was a major advance in duce more complex waveforms and spectra. For exam-
musical sound synthesis [1]. In the simplest FM synthe- pie, the output of an FM operator may be used as the
sis mode, the frequency of a sine wave (the carrier) modulator frequency for a second FM operator.
is modulated by another sine wave (the modulator) to

produce a complex waveform whose spectral character- 1 DOUBLE FREQUENCY MODULATION
istics depend on the parameters of the two sine waves

and the degree of modulation. If we consider the FM Eq. (1), a special method of
The basic equation for FM is synthesis is obtained by modifying the equation. In this

method the carrier is removed and replaced by another
x(t) = A sin[toot + I sin(tomt)] (1) modulator within the square brackets. These two modu-

where latorsare added,andthe resultis usedas an argument

A = amplitude for the overall sine function. The synthesis equation

toc = angular carrier frequency, = 2Wfc, fc being then becomes
carrier frequency

tom = angular modulator frequency, = 2'n'fm,fm be- x(t) = A sin[l I sin(to=t) + 12 sin(to2t)] . (3)
ing modulator frequency

I = modulation index We call this method of synthesis double frequency mod-
t = time. ulation (DFM).

We also note that Eq. (3) is identical to Schottstaedt's
When expressed in Fourier series form, it can be seen complex modulating wave [2] except that toot, that is,

that the amplitude of each harmonic component of the the carrier, is omitted. We can consider DFM to be a

FM spectra is governed by the Bessel functions of the special case of Schottstaedt's FM with a complex modu-
first type J,(1) as follows: lating wave.

x(t) = A sin[toct + I sin(tomt)]
2 SPECTRAL ANALYSIS OF DFM

= A ,=_ -_ J,(1) sin(toe + ntom)t. (2) To obtain the spectral representation of DFM, we first
make use of Eq. (1), that is, simple FM, and then treat

* Manuscript received 1992 April 16; revised 1994 February DFM as an extension of FM with an extra modulator,
9 andAugust20. but with the carrier frequency set to zero. It can be
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shown[3]that sidefrequencies.
Fig. 1 [1] illustrates this. In Fig. l(a) we have an

x(t) = A _'_ _ Ji(ll)Jk(l 2) sin(io_lt + ko2t). (4) example of a spectrum with components in their original
i k positions.In Fig. l(b) the harmonicson the negative

side of the frequency axis are reflected around 0 Hz,

Eq. (4) is the DFM spectral equation, which we can use inverted in phase, and added to the harmonics on the
as the basis for an algorithm to do spectral simulation positive side of the frequency axis. For example, the
using a digital computer. - 200-Hz component is inverted and added to the + 200-

In Eq. (4) the indices i and k run from - ooto o%giving Hz component, thus decreasing the energy at 200 Hz.
rise to frequency components that lie in the negative and Similarly, the - 300-Hz component is added to the
positive regions of the frequency axis. We have to reflect + 300-Hz component after inversion. Since the inverted
the negative frequency harmonics around 0 Hz with their - 300-Hz component is of the same phase as the + 300-
phases inverted and add them to harmonics that appear Hz component, the combined 300-Hz energy is in-
in the positive region. These lines are called reflected creased.
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Fig. 1. Demonstration of reflected side frequencies.
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between successive harmonics is 2 × 200/1 Hz, that is,
3 DFM HARMONICS 400 Hz. Fig. 3 shows the case when fl = 200 Hz and

We have written a program in C to generate the DFM f2 = 1000 Hz, that is, N1 and N2 = 5. The harmonic
harmonics using Eq. (4). By studying the output of the spacing is still 400 Hz, but the relative amplitudes of
program it is evident that the frequencies of the DFM the harmonics are different.

harmonics depend on the relative values off1 and f2. We Figs. 4 and 5 also illustrate this for the case N 1 = 3.
consider the case when f2 is greater than fl, andf2/fl = In Fig. 4fl = 300 Hz and f2 = 500 Hz, that is, N 2 =
N2/N 1, where N_ and N2 are nonzero integers not having 5; in Fig. 5./1 = 300 Hz and f2 = 700 Hz, that is, N 2
a common factor. The following empirical rules for the = 7. These two cases have the same harmonic spacing
frequencies generated apply for the DFM harmonics, of (2 x 300)/3 Hz, that is, 200 Hz, but the relative

amplitudes of the harmonics are different.
3.1 N, Odd, N2 Odd

We first consider the case when N 1 is an odd number. 3.2 N 1 Odd, N= Even

If N2 is also an odd number, then the frequency differ- For the case when N 1 is odd and N2 is even, the fre-
ence between harmonics will be 2fl/N _, that is, the har- quency difference between harmonics will befl/N 1, that
monic frequencies are given by is, the harmonic frequencies are given by

f=fl + 2fl n=0,1,2,3,.-, f=fl +nfl n=O, 1 2,3,.-.
- n N_-' " - N_ ' "

Fig. 2 illustrates this for fl = 200 Hz and f2 = 600 Figs. 6 and 7 give examples for fl = 200 Hz and N]
Hz. In this case N_ = and N 2 = 3 and the spacing = 1, forN 2 = 2and4, respectively, thatis,f2 = 400
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Fig. 2. fl = 200 Hz, f2 = 600 Hz, 11 = 12 = 3.0. Fig. 4. fl = 300 Hz, f2 = 500 Hz, I_ = 12 = 3.0.
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Fig. 3. fl = 200Hz, f_ = 1000Hz, I, = 12 = 3.0. Fig. 5.fl = 300Hz, f2 = 700Hz, I_ = 12 = 3.0.
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and 800 Hz. The spacing between harmonics is 200/1, values ofN 2and hence f2. It may be observed from Figs.
that is, 200 Hz. The relative amplitudes of the harmonics 10-12 that many of the harmonics are diminished in
vary with the actual values of N 2 and hence f2- amplitude for higher values of N 2.

Figs. 8 and 9 give examples for fl = 300 Hz and N l
= 3, for N 2 = 4 and 8, respectively, that is, f2 = 400 3.4 fl or f2 IS Zero
and 800 Hz. The spacing between harmonics is 300/3, When either one of the two frequencies is absent, for
that is, 100 Hz. Again, the relative amplitudes of the example, f2 is zero, then Eq. (3) will contain only fl
harmonics vary with the actual values ofN 2 and hence f2. or mt,

3.3 N1 Even, N2 Odd x(t) = A sin[I l sin(reit) ] .

For even values of Nj, N 2 will always be an odd num-
Then the harmonics generated are given byber. In this case the frequency difference between har-

monics will also be fi/Nj, that is, the harmonics frequen- ' f = f + nf, n = O, 1, 2, 3, · · ·
cies are also given by

The spacing between harmonics is equal to fl: This
f = fl + nfl- n = 0, 1,2, 3, · · ' . can also be interpreted as a case of N] -- I and N2 even,

- Nl ' regarding zero as an even integer. It can also be regarded
Figs. 10-12 give examples for fi = 200 Hz and N] as a special case of simple FM, with the carrier fre-

= 2, for N2 = 3, 5, and 7, respectively, that is, fl = quency fc equal to zero. It may be observed that some
300, 500, and 700 Hz. In all three cases the spacing of the harmonics are insignificant though not zero.
between harmonics is 200/2, that is, 100 Hz. However, Fig. 13 illustrates this for fl = 200 Hz and f2 = 0
the relative amplitudes of the harmonics vary with the Hz. The spacing between successive harmonics is 200
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Fig. 7. fl = 200 Hz, f2 = 800 Hz, I l = 12 = 3.0. Fig. 9. fl = 300 Hz, f2 = 800 Hz, I1 = 12 = 3.0.
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Hz. However, the 400; 800; I200-Hz frequency compo-

nents have very small but nonzero amplitudes that are 4 ADVANTAGES OF DFM
negligible when compared to the 200- and 600-Hz fre- DFM thus provides an alternative method of digital
quency components, sound synthesis in which, like simple FM synthesis,

harmonic frequencies can be generated from two given

0.7 frequencies.In FMthe harmonicspacingis the differ-
ence between the carrier frequency and the modulating

0.6 frequency. In DFM, for a given value off_ it is possible
to produce harmonics with spacings of 2fl, fl, or a sub-

"_ 0.5 multiple off1, depending on the ratio offl and f2. The
.-- relativeamplitudesof the harmonicsare dependenton

0.4
< theactualvalueofthehigherofthetwofrequenciesand
0_ the indices. The special case of DFM when one fre-

0.3
•-- quencyis zero is equivalentto thespecialcaseof FMEl.

E 0.2 when the carrier frequency is zero.<

I [ FMhas deservedly become recognized as one of the0.1 I [ most efficient methods of digitally generating musicalII [ J. , , , ...... sounds with rich harmonic components. However, the
0 harmonicsare limitedbythe factthat the FM spectrum

o o °o °o o °o °o on °o °o °o °o oo o o °o is arranged symmetrically on either side of the carrier

Frequency (Hz) frequency. In order to obtain complex harmonic envel-

Fig. 10. ft = 200 Hz, f2 = 300 Hz, It = 12 = 3.0. opes, it may be necessary to employ complex combina-
tions of several FM operators. Asymmetrical FM or
AFM [5] is able to overcome this by employing an addi-

0.7 tionalparameterwhichmodifiesthe simpleFM equa-
tion. This results in FM spectra that are asymmetrical

06 aboutthe carrierfrequencyand henceable to simulate
more complex spectral envelopes with fewer FM opera-

0.5 tots. TheAFMmethodof synthesis,whilepracticalfor

0.4 real-timegeneration[6], imposesa greater computa-
v tionalloadonthedigitalgeneratorcomparedto simple

0.3 FM.
__ DFMsynthesisoffersan alternativeto FMandAFM
E0.2 in that soundswithmorecomplexharmonicenvelopes<

II It | thansimpleFMmaybegenerated, whileavoidingthe01 II I computational load of AFM. In DFM we have only three
0 I II . ,, I.,,_.,__. sine functions, two multiplications, and one addition. Io

o o o o o o o o o o o o o o o o o o o o o AFM there are two sine functions, one cosine function,
O OO O OO O C:_ OOO OO O O OÙ OOO

c_ ,, _oo0o _ Z _ _ o _ _ _ _ o _ ;_ _ _ o one exponential function, five multiplications, two divi-
Frequency(Hz) sions, two additions, and one subtraction, which is corn-

Fig. 11. ft = 200 Hz, f2 = 500 Hz, 11 = 12 = 3.0. putationally much heavier than DFM. For example, we
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Fig. 12.fl = 200 Hz, f 2 = 700 Hz, 11= 12 = 3.0. Fig. 13.fl = 200 Hz,f2 = 0 Hz, 11 = 3.0, I z = 0.0.
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have found that DFM is able to control the symmetry 12 increases, the power drifts from the left side of the
of the spectrum around a dominant spectrum line to a dominant harmonic (800 Hz) to the right side.
certain extent, depending on both fl and f2. When the ratio off] and f2 is high and Il is smaller

Let us illustrate this by giving an example. In Fig. 14 than 12--for example, when fl = 200 Hz, f2 = 2000
we haveft = 200 Hz, I l = 1.3, andf 2 = 800 Hz while Hz, I l = 0.8, and 12 = 7.7--the spectrum of DFM has
12runs from 1.6 to 2.4 in steps of 0.2. In this figure, as a special characteristic. In Fig. 15 we can see that there
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are several clusters of harmonics, and each cluster has torola DSP56000 digital signal processor (DSP) to do

either two harmonics of the same amplitude or one domi- the DFM synthesis and generate waveforms with spectral
nant harmonic with two sidebands of equal amplitudes, harmonics as close to the spectra of these musical instru-
When 12 is smaller, we will get fewer of these clusters, ments as possible. The DFM waveforms were then ana-

We also have observed that when 12 is increased from a lyzed to compare their spectra with those of the original
lower value to a higher value, more and more of these waveforms from the MUMS CDs.

clusters will be generated at higher frequencies. In Figs. 16-18 the tables list the various parameter
values used for the DFM synthesis of the sampled instru-

5 DFM SYNTHESIS OF MUSICAL INSTRUMENTS ments. The spectrum plot after each table compares the
synthesized DFM waveform spectrum with that of the

To synthesize the waveform of a musical instrument,
the spectrum of the instrument to be synthesized has to

be obtained. If its waveform is available, either from 1.6
real-time performance or from a recording, its spectrum
may be obtained by using an FFT spectrum analyzer to 1.4
perform a spectrum analysis. From an inspection of the _1.2

spectrum, the DFM parameters such as fl, f2, I], and 12
may be chosen for which the synthesized DFM wave- _ 1
form would have the closest spectral characteristics to <
thatof therealsample. _ 08

We obtained waveforms of a number of musical in- _ 0.6 !
I

struments from the McGill University Master Samples <E0.4 I 11o" 11Compact Discs (MUMS CDs). The MUMS CD set is a 1] I [convenient source of musical instrument waveforms, as 0.2 I l[ Iit contains sampled waveforms of real musical instru-
ments. We used the waveforms for harpsichord, trum- 0 . , I i .. I t . . I I .... t
pet, and pipe organ from the MUMS CDs and obtained o 8 3 _ 8 8 8 _ 8 8 0 8 8 0 8 g o o0o8oo °
the spectraof these waveformsby subjectingthem to _ _o_-_ _
spectral analysis in a dedicated FFT analyzer. We then Frequency (Hz)
used an Apple Macintosh computer equipped with a Mo- Fig. 15. f] = 200 Hz, f2 = 2000 Hz, I_ = 0.8,1 z = 7.7.

I)FM OPERATOR A DFM OPERATOR B

AmpA = 50 AmpB = 50

lndexA1 = 0.8 IndexBl = 0.7

FreqAl = 440 Hz FreqBl = 1320 Hz

IndexA2 = 1.9 IndexB2 = -0.35
FreqA2 = 880 Hz FreqB2 = 1760 Hz

• MUMSSample
[] DFM Synthesized

I I I I I I I I I I 1 I 1 I I I I I I I

0.8

0.6==

-_ 0.4

0.2

0 I t I I 1 t I i I I I t t I I J I I I I i I I t i i I I i
0.44 1.32 2.2 3,08 3.96 4.84 5.72 8.6 7.48 0.36 9.24 10.12 11 11.88

Harmonic Frequency ( KHz )

Fig. 16. Harpsichord.
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DFM OPERATOR_AA DFM OPERATOR B

AmpA = 43 AmpB = 10

IndexA1 = 4.6 IndexB 1 = -1.55

FreqA1 = 220 Hz FreqB1 = 660 Hz

IndexA2 = 3.95 IndexB2 = -1.35
FreclA2 = 440 Hz FreqB2 = 1980 Hz

[] MUMS Sample
D DFM Synthesized

1

0.8

0.6

0.4

0.2

0 i i:_ i I 4 I _ I T _ I i I _ T I I I i _ I I I I 1 I I i I i I

0.22 0.66 1.t 1.54 1.98 2.42 2.86 3.3 3.74 4.18 4.62 5.06 5.5 5.94 6.38

Harmonic Frequency ( KHz )

Fig. 17. Trumpet.

DFM OPERATOR A DFM OPERATOR B DFM OPERATOR C

AmpA = 60 AmpB = 42 AmpC = 15

lndexAl = 1.9 IndexBI = 0.81 lndexCI = 0.68

FreqAl = 440 Hz FreqBl 2620 Hz FreqCl = 5280 Hz

IndexA2 = i.58 IndexB2 0.68 IndexC2 = 0.9

EreqA2 = 880 Hz FreqB2 = 3500 Hz FreqC2 = 7040 Hz

· MUMS Sample
-m DFM Synthesized

I I I I I I I [ I I I I I I I I I I I I I I I I I I I I
1 I I I I I I I I I I I I I I I I I I I I I I I I I I I
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Fig. 18. Pipe organ.
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original sampled waveform from the MUMS CDs. We method of synthesis with better control of harmonic en-

also note that the spectrum being modeled is a steady- velopes than simple FM, while requiring a lower compu-
statespectrum, tationalloadthanAFM.
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