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1. Answer briefly the following questions without derivations. 

a. Define computational (time) complexity of an algorithm; state the computational 

complexity of the LU decomposition for matrix of size 𝑁 × 𝑁. 

b. Give the Simpson rule for numerical integration with three equally spaced points 

with spacings ℎ; express the truncation error of the integration formula in terms 

of ℎ. 

c. For a Gaussian quadrature formula with three points, what are the polynomials 

of the form 𝑥𝑛 that can be integrated exactly, for integer 𝑛? 

d.  Define the symplectic algorithms for Hamiltonian dynamics. 

 

a ) The number of basic steps it takes to finish a calculation according to a given 

algorithm.   For LU decomposition of matrix of N x N, the computational complexity is 

O(N3).  b )  ∫ 𝑓(𝑥)𝑑𝑥 = ℎ(𝑓0 + 4𝑓1 + 𝑓2)/3
2ℎ

0
+ 𝑂(ℎ5).  Here 𝑓𝑖 ≡ 𝑓(𝑖ℎ).  c ) exact 

for polynomials 1, x, x2, …, x5, and their linear combinations.  d ) a symplectic 

algorithm is such that from step n to step n+1 is a canonical transform, i.e., 

∑ 𝑑𝑞𝑗
(𝑛+1)

⋀𝑑𝑝𝑗
(𝑛+1)

= ∑ 𝑑𝑞𝑗
(𝑛)

⋀𝑑𝑝𝑗
(𝑛)

 𝑗  𝑗 . The algorithm preserves the symplectic 

structure of the Hamiltonian dynamics exactly.  

 

2. Although the Gaussian random numbers in one dimension with a variance 𝜎2 and mean 

value 𝑎 can be generated more efficiently with the Box-Muller transformation method, 

here we use Monte Carlo method. 

a. The probability density 𝑝(𝑥) of the Gaussian random number is proportional to 

𝑒
−

(𝑥−𝑎)2

2𝜎2 .  State the Metropolis algorithm using this probability. 

b. Implement the Metropolis algorithm as a workable Python code to generate 

Gaussian random numbers.   

 

      a )  Pick an arbitrary point x to start with.   Attempt to move x to x’ = x + (2-1)x, 

here  is a uniform random number from 0 to 1, and x is some fixed interval, say 0.1.   

compute the ratio r = p(x’)/p(x) and compare with another random number 2.  If 2 < r, 

use x’ as the next sample.  If otherwise, use x as the next sample.  [In any case, we get 

one additional sample].  Repeat this N times. b) omitted.  

 

3. Given a one variable function 𝑓(𝑥), to determine its minimum numerically, we can first 

fit it to a quadratic polynomial based on the values at three points, 𝑎 < 𝑐 < 𝑏, with 

function values 𝑓(𝑎), 𝑓(𝑐), 𝑓(𝑏). 

a. Work out an explicit expression for this polynomial of degree 2. 

b. Derive a formula for the minimum location 𝑥 based on the result of part a. 
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a ) We can use the Lagrange formula or Neville’s algorithm, but it is simpler if we start 

from “first principles”.   Let 𝑓(𝑥) = 𝛼𝑥2 + 𝛽𝑥 + 𝛾, Since when x = a, b, c, the function 

need to be f(a), f(b), f(c), respectively, we need to solve the 3 by 3 matrix equation as 

(
𝑎2 𝑎 1
𝑏2 𝑏 1
𝑐2 𝑐 1

) (

𝛼
𝛽
𝛾

) = (

𝑓(𝑎)
𝑓(𝑏)
𝑓(𝑐)

) .The solution can be expressed via Cramer’s rule as ratio 

of two determinants. [Details omitted].  b )  The minimum of x is 𝑓′(𝑥) =
𝑑𝑓

𝑑𝑥
= 2𝛼𝑥 +

𝛽 = 0.   Or 𝑥𝑚𝑖𝑛 = −
𝛽

2𝛼
= −

1

2

|

𝑎2 𝑓(𝑎) 1

𝑏2 𝑓(𝑏) 1

𝑐2 𝑓(𝑐) 1

|

|

𝑓(𝑎) 𝑎 1

𝑓(𝑏) 𝑏 1

𝑓(𝑐) 𝑐 1

|

=
1

2
 
(𝑏2−𝑐2)𝑓(𝑎)+(𝑐2−𝑎2)𝑓(𝑏)+(𝑎2−𝑏2)𝑓(𝑐)

(𝑏−𝑐)𝑓(𝑎)+(𝑐−𝑎)𝑓(𝑏)+(𝑎−𝑏)𝑓(𝑐)
. 

      

4. A standard method to solve the time evolution of the Schrödinger equation is the Crank-

Nicolson method, which is based on the approximation (𝐼 + 𝑖
Δ𝑡

2ℏ
 𝐻) Ψ(𝑡 + Δ𝑡) =

(𝐼 − 𝑖
Δ𝑡

2ℏ
 𝐻) Ψ(𝑡),  here Ψ is a column vector of complex numbers representing the 

wavefunction at space points, 𝐼 is the identity matrix, and 𝐻 is the Hamiltonian in a 

discretized representation as a matrix, Δ𝑡 is the time step. 

a. We say an integration scheme is order 𝑛 if it is accurate to Δ𝑡𝑛.   Determine the 

order of the algorithm in time step Δ𝑡, i.e., what is the integer 𝑛, such that error 

to the solution is 𝑂(Δ𝑡𝑛+1) in one time step? 

b. Show that the solution scheme is unitary exactly to machine precision, that is the 

norm ⟨Ψ|Ψ⟩ = Ψ(𝑡 + Δ𝑡)†Ψ(𝑡 + Δ𝑡) = Ψ(𝑡)†Ψ(𝑡) is invariant with respect to 

time steps.  The dagger † here denotes the Hermitian conjugate. This means that 

the total probability is preserved by the algorithm.  

 

a ) Let define 𝛼 ≡
𝑖Δ𝑡𝐻

ℏ
, the Crank-Nicolson is(1 +

𝛼

2
) Ψ(𝑡 + Δ𝑡) = (1 −

𝛼

2
) Ψ(𝑡), or solve 

for Ψ(𝑡 + Δ𝑡) = (1 +
𝛼

2
)

−1

(1 −
𝛼

2
) Ψ(𝑡).    Taylor expand the inverse using (1 + 𝑥)−1 =

1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯, and multiply, we find Ψ(𝑡 + Δ𝑡) = (1 − 𝛼 +
𝛼2

2
−

𝛼3

4
+ ⋯ ) Ψ.  

Compare this with the exact expansion of Ψ(𝑡 + Δ𝑡) = 𝑒−𝛼Ψ(𝑡), we find the error is at 

𝛼3  (expanding the exponential gives 1/6 instead ¼ at the 3rd order).   So, the algorithm is 

second order in Δ𝑡, error is  𝑂(Δ𝑡3).    b) Take the Hermitian conjugate of Ψ(𝑡 + Δ𝑡) =

(1 +
𝛼

2
)

−1

(1 −
𝛼

2
) Ψ(𝑡), and noting that 𝛼† = −𝛼, we find ⟨Ψ(𝑡 + Δ𝑡)|Ψ(𝑡 + Δ𝑡⟩ =

⟨𝛹(𝑡)│𝑂̂|𝛹(𝑡)⟩, the operator is 𝑂̂ = (1 +
𝛼

2
) (1 −

𝛼

2
)

−1

(1 +
𝛼

2
)

−1

(1 −
𝛼

2
).  These four 

factors commute because they are the function of a single Hamiltonian H, so we can 

move around and cancel them to 1. 
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5. To find an energy minimum in a molecular system with the Hamiltonian 𝐻 = 𝑇 + 𝑉, one 

can use steepest descent, here 𝑉 = 𝑉(𝑥) is the potential energy, and 𝑥 is a vector of all 

the positions of the molecules.    

a. If the current position is at 𝑥(𝑛) at 𝑛-th iteration, give the iteration equation that 

represents a single steepest descent to the next step at 𝑛 + 1. 

b. However, in part a, we have not used the kinetic energy term 𝑇 = 𝑝2/(2𝑚), 

thus the steepest descent results in a slow method.   How to incorporate the 

equations of motion of the Hamiltonian dynamics to give a better algorithm?  In 

neural network, the resulting method is known as stochastic gradient with 

momentum.  

 

a ) We go in the direction of negative gradient (i.e. force) as 𝑥(𝑛+1) = 𝑥(𝑛) −

𝜂∇𝑉|𝑥(𝑛).  If we perform the standard steepest descent, we do a line search to 

find minimum with respect to 𝜂, but in application in neural network, we just use 

a fixed small value of 𝜂 > 0.     b) we can use a method inspired by the Euler 

algorithm, so we update as 𝑥(𝑛+1) = 𝑥(𝑛) + 𝜖 𝑣(𝑛), 𝑣(𝑛+1) = 𝑣(𝑛) − 𝜂∇𝑉(𝑥(𝑛)).   

This is known as stochastic gradient with momentum. 

 

 

 

 

--- End ---                                                                           [JSW] 

 


