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PC5215, Numerical Recipes with Applications 

Lab 4, due Tuesday, 19 November 2024 

 

1. In this last lab, we consider solving a one-electron time-dependent Schrödinger equation 

in one dimension scattering over a potential barrier.  We send an electron from the left 

side of the barrier and ask the probability T(E) (transmission probability) that the electron 

passes through the barrier, as a function of incoming electron energy E.   The equation is 
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We choose two forms of potential  
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For numerical computation, we take V0 = 1 eV, and take the distance of the barrier a such 

that 
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a. First, we solve the problem with the rectangular potential V1 analytically as a 

check for part (b) using numerical methods. To do this, use the plane wave as a 

trial solution 
( ) /( , ) i px Etx t ce  − = and match the boundary conditions (the 

function and its first derivative should be continuous) at 0 and a to find the whole 

solution.  Determine the transmission probability by the absolute value square of 

the outgoing wave (T = |c|2) if the incoming wave has amplitude 1.  Note that T + 

R = 1, where R is the probability that the particle is reflected back to the left.  Plot 

T as a function of E from 0 to 2 eV. 

 

b. Next, we solve the same problem as in (a) numerically using “wave packet”.  The 

idea is that we send a wavepacket from the left side with energy centered around 

𝐸 =
𝑝0
2

2𝑚
 and evolve the wavepacket in time for a sufficiently long time and then 

ask what is the total probability that the particle is on the right side.   We use the 

following form for the Gaussian wavepacket with position centered around x0 and 

momentum centered around p0, as the initial condition to the time-dependent 

Schrödinger equation: 
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Formally, the solution to the time-dependent Schrödinger equation can be 

obtained by 
ˆ /( ) (0)itHt e− =  . To evolve the wavepacket, we use the Crank-

Nicholson method which is based on the evolution operator at small time 

intervals:  
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The reason for splitting into two pieces is to preserve wavefunction normalization.  

Using the central difference for the second derivative with respect to position x,  

  2''( ) ( ) 2 ( ) ( ) /f x f x x f x f x x x= + − + −  , derive a discrete scheme to solve a 

tri-diagonal linear system to get the new wavefunction in one step; this solves the 

Schrödinger equation evolving in time, and then compute the probability that the 

particle is on the right-side.  

 

Compare your answers for T(E) with the exact one found in part (a).  Pay 

attention to the unspecified parameters such as x0, σ, Δt, Δx, number of points N, 

etc. You better make plots/animation to see where your wavepacket is after a 

contain time step. 

 

 

c. Repeat the same calculation as in (b) with the parabolic potential V2. Compare and 

discuss the result. 

 

 

 

 


