PC5215, Numerical Recipes with Applications

Midterm Test, 2 October 2009

Sign bit is 0 for a positive number; the biased exponent is $e=100\ 0001\ 0 = 128 + 2 = 130$; the fractional part is $0.010\ 01 = \frac{1}{4} + \frac{1}{(32)} = 0.28125$. The floating number is $2^{e-127} \times (1 + 0.28125) = 10.25$.

2. Consider the special polynomials $l_i(x)$ used in the Lagrange interpolation formula. (a) If the number of interpolation points N = 4 at x_1 to x_4 equals -1, 0, 2, 4, respectively, give the first polynomial $l_1(x)$. (b) Show that $\sum_{j=1}^{N} l_j(x) = 1$ for any N.

(a)
$$l_1(x) = \frac{x(x-2)(x-4)}{(-1-0)(-1-2)(-1-4)} = -\frac{1}{15}x(x-2)(x-4)$$
. (b) Consider a function $f(x) \equiv 1$. Using the interpolation formula for $f(x) = \sum_{j=1}^{N} y_j l_j(x) = 1$, we find that the only choice for y is 1. Because the required interpolation result is unique, we must have the result for any x and N.

3. Consider two-point gaussian quadrature formula of the form $\int_{0}^{h} f(x)dx = w_{1}f(x_{1}) + w_{2}f(x_{2})$ (a) Which of the following polynomials can be integrated exactly: 1, x, x^{2} , x^{3} , x^{4} , x^{5} ? Give your intuition as why this is so. (b) Determine the abscissas x_{1} and x_{2} and weights w_{1} and w_{2} .

(a) for polynomials 1, x, x^2 , x^3 , the integration formula is exact. This is because we have 4 degrees of freedom to fix the formula. (b) Let $P_0 = 1$, $P_1 = x + c$, by orthogonality of P_0 and P_1 , we find $\int_0^h (x+c)dx = \frac{1}{2}h^2 + ch = 0$. So c = -h/2. Similarly, assuming $P_2 = x^2 + bx + c$, we determine b and c by $\int_0^h P_0 P_2 dx = 0$, and

$$\int_{0}^{h} P_{1}P_{2}dx = 0$$
, which gives $b = -h$, $c = h^{2}/6$. The roots of P_{2} are $x_{1,2}/h = \frac{1}{2} \pm \sqrt{\frac{1}{12}}$.

To determine the weights, we use that fact that the formula is exact for polynomials 1, and x. This gives $h = w_1 + w_2$, $h^2/2 = w_1x_1 + w_2x_2$. The solution is $w_1 = w_2 = h/2$.

4. We are interested to generate a two-dimensional distribution with probability density of the form $e^{-|x|-y^2} \frac{1}{1+|xy|^2}$ for variables $-\infty < x, y < +\infty$. We want to use the Metropolis Monte Carlo algorithm to sample such a distribution. Write a set

of pseudo-code to do so (not really C program but a set of outline steps that can be easily transcribed into a program).

```
Set x = 0, y=0, a = 0.1;

M is a number larger than typical equilibration time.

for(i=0; i < M; ++i) {

\xi_1 = drand48();

\xi_2 = drand64();

x1 = x + (2\xi_1-1)a;

y1 = y + (2\xi_2-1)a;

f1 = exp(-fabs(x1)-y1*y1)/(1+fabs(x1*y1)^2);

f = exp(-fabs(x)-y*y)/(1+fabs(x*y)^2);

r = f1/f;

if(drand48() < r) {

x = x1;

y = y1;

}

return (x,y)
```