NATIONAL UNIVERSITY OF SINGAPORE

PC5202 Advanced Statistical Mechanics

(Semester II: AY 2007-08, 5 May 08)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This is an OPEN BOOK examination.
- 2. This examination paper contains 5 questions and comprises 4 printed pages.
- 3. Answer ALL the questions.
- 4. Answers to the questions are to be written in the answer books.
- 5. Each question carries 20 marks.

1. Choose only one (A, or B, or C) among the alternatives that is the most accurate statement. Notations are those used in class.

(1). A typical time scale associated with atomic motions (e.g. vibration in solids) is of the order of,

A. 10^{-17} s, B. 10^{-14} s, C. 10^{-10} s.

(2). Callen's second postulate says that entropy S of a system is a maximum in comparison with the entropies of

- A. other nonequilibrium states,
- B. unconstrained states,
- C. constrained equilibrium states.
- (3). Which of the statements is incorrect: entropy is defined by,
 - A. $1/T = \partial S/\partial U$,
 - B. dS = dQ/T,
 - C. $S = k_{\rm B} \ln \Omega$.
- (4). Liouville's theorem states:
 - A. $\partial \rho / \partial t = -(H, \rho)$,
 - B. dA/dt = (A, H),
 - C. $d\Gamma_t = \text{const.}$

(5). Single out the inaccurate statement: in a microcanonical ensemble, the system is distributed in phase space,

- A. on a constant energy surface (*H*=const) with equal probability,
- B. on an energy shell $E < H < E + \Delta$ with equal probability,
- C. on a constant energy surface with probability proportional to $d\sigma/|\nabla H|$.
- (6). Canonical ensemble is valid for a single particle
 - A. in contact with a heat bath,
 - B. in isolation,
 - C. in isothermal processes.
- (7). The heat capacity C of an Einstein solid
 - A. decreases with temperature T linearly,
 - B. decreases with *T* exponentially,
 - C. approaches a constant as $T \rightarrow 0$.
- (8). The spontaneous magnetization of a ferromagnet is the
 - A. average magnetic moments when magnetic field is present,
 - B. average magnetic moments when temperature is low,
 - C. average magnetic moments when a magnetic field is absent.

- (9). Which of the following is correct:
 - A. triangular lattice is self-dual,
 - B. rectangular lattice is self-dual,
 - C. face-centered cubic lattice is self-dual.
- (10). Einstein relation in the theory of Brownian motion means that:
 - A. noise correlation is related to frictional force,
 - B. the viscous force is proportional to the velocity,
 - C. the diffusion constant is proportional to mobility.
- (1) B, (2) C, (3) A, (4) C, (5) A, (6) A, (7) B, (8) C, (9) B, (10) C.
- **2.** Consider *N* non-interacting point particles moving between a fixed, permeable, and diathermal wall of two compartments of volumes V_1 and V_2 with $V_1 = V_2 = V$. The Hamiltonian of the combined system can be written as

$$H = \sum_{i=1}^{N} \left(\frac{\mathbf{p}_{i}^{2}}{2m} + u(\mathbf{r}_{i}) \right)$$

The single particle potential energy $u(\mathbf{r})$ is $+\infty$ for \mathbf{r} outside the two compartments, and is 0 in the first compartment, but is a constant u_0 in the second compartment.

- (a) Are the temperatures of the gas in the two compartments equal?
- (b) Which of the ensembles among the microcanonical, canonical, and grand-canonical is most suited for this problem?
- (c) Calculate the average number of particles N_1 and N_2 in each compartment, expressed in terms of the temperature T of the compartment, the potential u_0 , and the total number of particles N.
- (d) Compute the pressure P_1 and P_2 in each compartment.
- (a) Yes, $T_1=T_2=T$, since two compartments are separated by a diathermal wall (i.e. heat conducting wall).
- (b) Canonical. Taking the system as a whole, volume V_1+V_2 and total number of particles N are fixed.
- (c) Consider only one particle, $Exp[-\beta(p^2/(2m) + u(\mathbf{r}))]d\mathbf{p}d\mathbf{r}$ gives the (unnormalized) probability that it has momentum \mathbf{p} and position \mathbf{r} . Integrating over \mathbf{p} , we find that the probability of finding the particle at \mathbf{r} is just proportional to $Exp[-\beta u(\mathbf{r})] d\mathbf{r}$. Integration over the volume of V_1 or V_2 , we find the ratio of probability for it in the 1st to 2nd volume is 1 to $exp(-\beta u_0)$. Since particles are non-interacting, the ratio is the same as a whole, i.e.,

 $N_1 + N_2 = N$, $N_1/N_2 = 1/exp(-\beta u_0)$, $\beta = 1/(k_B T)$.

Solve the equations, we find $N_1 = N/(1 + exp(-\beta u_0))$, $N_2 = N/(1 + exp(\beta u_0))$.

(d) Use ideal gas law, we find $P_1 = N_1 kT/V_1$, $P_2 = N_2 kT/V_2$. Alternatively, one can also find the partition function first, $Z = z^N/N!$.

 $z = (2\pi m k_B T/h^2)^{3/2} [V_1 + V_2 \exp(-\beta u_0)].$

 P_1 or P_2 is obtained by taking partial derivative with respective to V_1 or V_2 of the free energy $F = -k_BT \ln Z$, then set $V_1 = V_2 = V$.

3. Consider a one-dimensional three-state Potts model with periodic boundary condition. The Hamiltonian of the system is given by

$$H(s) = -J \sum_{i=1}^{N} \delta_{s_i, s_{i+1}}, \quad s_i = -1, 0, 1$$
,

where the spins take three different values, and δ is the Kronecker delta symbol, i.e., $\delta_{a,b} = 0$ if $a \neq b$, and 1 if a = b. Use the transfer matrix method to solve this problem.

- (a) Give the transfer matrix *P* such that the partition function $Z = Tr(P^N)$.
- (b) Determine the equation for the eigenvalues λ , and find the eigenvalues of *P* [hint: to solve the polynomial equation, use a new variable $\alpha = e^{K} 1 \lambda$, where $K = J/(k_{B}T)$].
- (c) Compute the free energy per spin in the thermodynamic limit.
- (a) The partition function is

$$P = \exp(K\delta_{s_1, s_2}) = \begin{bmatrix} e^K & 1 & 1\\ 1 & e^K & 1\\ 1 & 1 & e^K \end{bmatrix}$$

- (b) The eigenvalues are obtained from the secular equation det(P -λI)=0, which gives (α+1)³-3α-1 = 0. Expanding the cubic term, α³+3α²=0, with solution α = 0, 0, -3. Or λ = e^K-1-α = e^K-1, e^K-1, or e^K+2. The last one is bigger.
 (c) f = -k_B T(ln Z)/N = -k_B T ln(e^K+2).
- **4.** The magnetic susceptibility per spin is related to the two-point correlation function by

$$\chi = \frac{\partial m}{\partial h} = \beta \int d^d \mathbf{r} G(r), \quad \beta = \frac{1}{k_B T}.$$

The correlation function G(r) takes the form

$$G(r) \sim \frac{e^{-r/\xi}}{r^{d-2+\eta}}$$

for an infinitely large lattice in *d*-dimensions.

- (a) Show that, at the critical temperature T_{c} , on a finite lattice of hypervolume L^d , the susceptibility diverges with the linear size L as $\chi \sim L^{2-\eta}$.
- (b) The free energy of a finite system obeys a finite-size scaling near the critical point, $f(t,h,L) = b^{-d} f(b^y t, b^x h, b/L)$, where b>0 is an arbitrary scaling factor, x and y are some scaling exponents. Show

that at the critical point, t = 0, h = 0, the susceptibility χ diverges with size *L*. Find the corresponding exponent, i.e., the power a in $\chi \sim L^{a}$.

- (c) Based on the results of part (a) and (b), express the exponent η in terms of *x*, *y*, and *d*.
- (a) At T_c , correlation length $\xi \to \infty$, so $G(r) \sim 1/r^{d-2+\eta}$. For a finite system of linear size L, the radius runs up to L, we get

$$\chi \sim \int^L \frac{1}{r^{d-2+\eta}} r^{d-1} dr \approx L^{2-\eta}.$$

- (b) $\chi = \frac{\partial m}{\partial h} = -\frac{\partial^2 f}{\partial h^2}$. Using the scaling relation for f, we find scaling for χ , by differentiation with respective to h twice, $\chi(t,h,L) = b^{2x-d}\chi(b^y t, b^x h, b/L)$. setting t=h=0, b=L, we get $\chi(0,0,L) = L^{2x-d}\chi(0,0,1)$, i.e., $\chi \sim L^{2x-d}$, a = 2x-d.
- (c) $2x d = 2 \eta$, so $\eta = 2 2x + d$.
- 5. Consider the Langevin equation in one dimension

$$m\frac{d^{2}x}{dt^{2}} = -kx - m\gamma\frac{dx}{dt} + R(t)$$
$$\langle R(t) \rangle = 0,$$
$$\langle R(t)R(t') \rangle = C\delta(t'-t).$$

This is a harmonic oscillator with mass m and spring constant k, subjected to damping and a random force (white noise).

(a) Let the Fourier transform of the coordinate *x* be

$$\tilde{x}[\omega] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} x(t) e^{-i\omega t} dt .$$

Derive the algebraic equation that the Fourier component $\tilde{x}[\omega]$ must satisfy; solve the equation in terms of the Fourier transform of the random noise.

- (b) Find the expression, $\tilde{F}[\omega]$, in terms of the model parameters (*m*, *k*, γ , *C*) and frequency ω , which is the Fourier transform of the correlation function, $F(t) = \langle x(t)x(0) \rangle$, [Hint: you may use the Wiener-Khintchine theorem].
 - (a) The inverse Fourier transform is $x(t) = \int_{-\infty}^{+\infty} \tilde{x}[\omega] e^{i\omega t} d\omega$ Substituting into the differential equation, we get $(i\omega)^2 m \tilde{x} = -k \tilde{x} - m \gamma(i\omega) \tilde{x} + \tilde{R}, \text{ which can be solved to get}$

$$\tilde{x}[\omega] = \frac{\tilde{R}[\omega]}{k + im\gamma\omega - m\omega^2}.$$

(b) The Fourier transform of the correlation F(t) is given by the power spectrum of x. Applying the Wiener-Khinchine theorem, we found

$$\tilde{F}[\omega] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \langle x(t)x(0) \rangle e^{-i\omega t} dt = \frac{C/(2\pi)}{\left|k + im\gamma\omega - m\omega^2\right|^2}.$$

Note that the power spectrum of random noise R is $C/(2\pi)$ for white noise.

-- the end --

[WJS, 6 May 2008]