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INSTRUCTIONS TO CANDIDATES 

 

1. This examination paper contains 5 questions and comprises 3 printed pages. 

2. Answer all the questions. 

3. Answers to the questions are to be written in the answer books. 

4. This is an OPEN BOOK examination.  

5. Each question carries 20 marks. 
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1. Answer concisely the following questions: 
a. Define the Kelvin scale. 
b. Is the Helmholtz free energy F as a function of temperature T convex or concave? 
c. Give the argument leading to the Maxwell construction (of the van der Waals 

equation for gas). 
d. Explain the concept of “universality” in critical phenomena. 

 
a. The temperature absolute 0 is fixed by nature (entropy is then 0); the triple point of 

water is defined to be 273.16 K.  The rest of the temperature can be uniquely 
determined by the 2nd law of thermodynamics (with Carnot cycle). 

b. F is concave in T, because S=- ∂F/∂T, ∂S/∂T = - ∂2F/∂T2> 0 (entropy is an increasing 
function of T). 

c. The equal area law of Maxwell is obtained by the requirement that chemical 
potentials μ of the gas phase and liquid phase are equal, assuming that the van der 
Waals equation is also valid in the unstable region.  We need the Gibbs-Guhem 
equation to show this. 

d. The critical exponents, α, β, γ, etc., do not depend on the details of the systems but 
only depend on the space dimensionality d, dimensionality of the order parameter n, 
and the range of interactions.  This fact can be explained by the renormalization 
group theory of the second order phase transitions. 

 
 

2. Consider a collection of N (one-dimensional) harmonic oscillators all with the same 
intrinsic frequency ω0 treated with classical “microcanonical” ensemble.  The 
Hamiltonian is   
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a. Using the Boltzmann’s principle, determine the entropy S(U,N). 
b. Calculate the heat capacity based on S. 
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a. Entropy S = kB ln Ω (by Boltzmann’s principle) 
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We have introduced new variable xj = ω0 qj. and used the formula for the hyper-
volume of 2N-dimensional sphere of radius 2U . 
 

b.    T=∂U/∂S = U/(kB N), or  U = N kB T. Heat capacity is C = ∂U/∂T = kB N (same as 
that given by equal partition theorem). 

 

3. Consider the ferromagnetic Ising model with coupling constant J and nearest neighbor 
interaction (without magnetic field) defined on a finite network of five sites as shown 
below. 

a. Determine the high-temperature expansion of the partition function Z in variable  
x = tanh(K), K = βJ =J/(kBT). 

b. Draw a dual lattice to the five-site system, and give the Hamiltonian associated 
with the dual lattice so that duality relation holds. 

c. Give the low-temperature expansion of the partition function Z on the dual lattice. 
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a. Z = 25cosh6(K)(1 +x3+x4+x5). 
b. Dual lattice has 3 sites, call it A for the center of square, B for the center triangle and 

C for a site outside, then  H*= - J*(σAσB + 2 σBσC + 3σAσC). 
c. Z* = 2 e6K* (1 +e -6K* + e-8K* + e-10K*). 
 
 

4. Consider a system where the velocity v(t) is governed by some stochastic dynamics 
similar to the Langevin equation (actual form is not given).   We assume that v(t) is a 
smooth, bounded function of time t, and the velocity correlation ( ) ( ')v t v t  can be 

calculated. The position displacement variable will be called x(t) at time t, and assuming 
x(0) = 0. 

a. Determine the approximate time dependence of 2( )x t  when time t is small. 

b. Work out the expression of  2( )x t  in terms of velocity correlation when t is 

large, assuming the velocity correlation is time translationally invariant. 
 
a. Since v(t) is a smooth function, and x(t) = ∫ 𝑣(𝑠)𝑑𝑠𝑡

0 , we can make a Taylor 
expansion of x(t) in time t,  x(t) = x(0) + v(0)t + O(t2).  x(0) = 0.  We obtain <x(t)2> ≈ 
<v(0)2>t2. 

b. <x(t)2> = <∫ 𝑣(𝑡′)𝑑𝑡′𝑡
0 ∫ 𝑣(𝑡′′)𝑑𝑡′′𝑡

0 >.  Using translational invariance, <v(t)v(t’’)> = 
<v(0)v(t’-t’’)>. Changing the integration variables from t’, t’’, to t’ and s=t’’-t’, and 
considering carefully the new limits, we obtain  
 <x(t)2> =2 ∫ (𝑡 − 𝑠) < 𝑣(0)𝑣(𝑠) > 𝑑𝑠𝑡

0 .   In the large time limit, it is 

 <x(t)2> =2t ∫ < 𝑣(0)𝑣(𝑠) > 𝑑𝑠∞
0 . 

 
5. Consider the Boltzmann’s H-theorem.  The time-dependent “Boltzmann entropy” is 

defined by the equation  
 3 3( ) lnB BS t k f f d d= − ∫ r p  , 

where f = f(r,p,t) is the distribution function of molecules having position r and 
momentum p at time t. The function f satisfies the Boltzmann equation:  

coll

f ff f
t m t
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a. Show that if the molecules do not collide, i.e., if 0
coll

f
t

∂  = ∂ 
, then the entropy SB 

does not change with time. 
b. Explain qualitatively (i.e., no equations) why entropy SB always increases if there 

are molecular collisions. 
 

a. Exchange the order of differentiation of time with the phase space integration, and 
using the Boltzmann equation when the collision term is zero, we have (dr = dxdydz, 
dp = dpx dpy dpz) 
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Note that because p and r are independent variables, we can rewrite the expression 
as an integral of a divergence. Using Gaussian theorem, divergence of a volume 
integral can be written as integral over the surface. For example, focus on the partial 
x term, we have 
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Similarly for y and z components, and px, py, pz.  We have assumed that outside the 
box, or when momentum is very large, f = 0, and F is a function of r only. 
 

b. First, the Boltzmann equation is not time-reversible symmetric due to the assumption 
of molecular chaos of the collision term. Second, collision causes a redistribution in 
the space of r and p.  So the distribution is more and more uniform in space (thus 
larger entropy) and more close to Maxwell distribution for the velocity.  Third, the 
function f is a reduced description of the system, not a full description – information 
is “lost” as time goes on.  Thus, under collision, Sb increases as shown quantitatively 
by the Boltzmann H-theorem. 
 

-- End of Paper --         [WJS] 


